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Supervisor’s Foreword

This thesis has two parts, each based on an application of the Wilson renormal-
ization group (RG). In the form developed by Wilson in the 1970s, the RG pro-
vides the means for determining various quantities that characterize systems
spanning many length and time scales. Originally used for the calculation of
critical exponents and equations of state in critical phenomena, applications of the
RG have broadened to many other branches of physics, including dynamical
systems and chaos, fractals, and disordered systems, and has become a standard
topic in the undergraduate curriculum.

A RG transformation is comprised of two steps: coarse graining, based on the
systematic elimination of short wavelength fluctuations, followed by a rescaling to
restore the system to its original size. The result of the RG transformation is a
similar system, but with ‘‘renormalized’’ coupling constants, whose changes can
be represented by a trajectory as these transformations are repeated. Fixed points
of these trajectories are of particular interest, as they represent scale-invariant
states of the system. There are three types of variables associated with transfor-
mations near fixed points: relevant, which are driven away from the fixed point and
represent experimental quantities which must be set to their critical values, irrel-
evant, which are driven toward the fixed point, and marginal, which are neither
relevant nor irrelevant. Marginal variables, though comparatively rare, play an
important role in the RG analysis in the second part of this thesis.

There are various formulations of the Wilson RG, including closed-form dif-
ferential generators and diagrammatic expansions. Generators can be expanded to
obtain the terms that contribute to the RG transformation, while diagrammatic
methods are useful for identifying such terms directly. Part I of this thesis is an RG
analysis of the d-dimensional Coulomb gas, a classic problem that has been
studied from many perspectives. The analysis carried out in this thesis is based on
the generator formulation of the Wilson RG. This necessitates a functional rep-
resentation of the thermodynamic behavior of the system, in this case, the grand
canonical partition function, which was derived from a regularized model of
charges placed on a hypercubic lattice. The goal of this analysis was (1) to
determine the trajectories of the coupling constants under the iterative application
of the RG, and therefore (2) to see if the Wilson RG could provide input into
particle-in-cell simulations in plasma physics, which are the main family of
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simulation methods used in this field. The role of the RG was to identify the effect
of coarse graining on the coupling constants as a function of the infrared and
ultraviolet cutoffs, which are the lattice spacing and system volume, respectively.
The RG calculations reproduced established results, but in a more concise and
transparent form, motivated a somewhat generalized form of the original func-
tional, and determined closed-form expressions for the Debye screening length as
functions of the cutoffs.

The main part of this thesis is the application of the dynamical RG to mag-
netohydrodynamic (MHD) turbulence. Turbulence is a widespread phenomenon in
the dynamics of fluid flow which is often studied through the Navier–Stokes
equation for electrically neutral fluids. The onset of turbulence is characterized by
the Reynolds number R, a dimensionless constant expressed as the ratio of inertial
forces which act on the fluid to the viscous forces responsible for energy dissi-
pation from the fluid. When the viscous forces are much smaller than the inertial
forces, i.e., R� 1, large-scale excitations are formed in the fluid, which then
cascade to ever smaller excitations to the scale where the energy is dissipated.

This cascade is a characteristic feature of turbulence. MHD turbulence is
characterized by non-linear interactions between fluctuations of the magnetic field
and the flow velocity over a range of spatial and temporal scales, and plays an
important role in several plasma phenomena, such as heating, the transport of
energetic particles, and radiative transfer. MHD turbulence is also a key aspect of
space and astrophysical plasmas.

The basic RG procedure is the same as for the d-dimensional Coulomb gas, but
the evaluation of the pertinent terms is more involved because of the vector nature
of the equations, which are an amalgamation of the Navier–Stokes and Maxwell
equations, and the presence of stochastic stirring terms. The properties of quasi-
neutral fluids governed by stochastic MHD equations are investigated with a
method based on the diagrammatic representation of the Martin–Siggia–Rose
field-theoretic formulation of stochastic dynamics. After the transformation to
Elsasser variables, which is a symmetrization of the original equations, the solu-
tion is represented as a functional integral. The Jacobian resulting from the change
of field variables was shown to reduce to a field-independent constant, which
could, therefore, be omitted from the analysis. The coarse graining of the func-
tional integral—involving a heroic bout of algebra—and its subsequent rescaling
were cast differential equations for the analysis of RG trajectories.

The RG calculation identified an infinite set of diagrams which are marginal in
the RG sense, that is, they neither grow nor decay under the action of the RG, as
described above. The same problem arises for the randomly stirred Navier–Stokes
equation. The marginal variables can be suppressed by working near equilibrium,
where stochastic forcing results from thermal fluctuations, which enables the
imposition of the fluctuation-dissipation theorem. Although such restrictions mean
that the couplings in the Navier–Stokes equation remain at their microscopic
values, for MHD, the effective diffusivity and viscosity tend to non-trivial values.
Most importantly, these calculations demonstrate that, within this framework,
marginal terms can be ignored, together with all higher-order corrections.
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A non-zero correction to the three-point vertex was also computed, which
introduces new structure: the kinetic equation is renormalized, while the induction
equation is not. A consistent methodology for self-checks at this order would
require the Ward–Takahashi identities, which provide relations between three-
point vertices. This does not appear to have been reported in the literature. Since
there is no small expansion parameter in the RG analysis, the effect of higher order
terms, which need not be small, must be thoroughly analyzed near a fixed point
before any physical predictions can be made. At least in the case of equilibrium
fluctuations, such an analysis seems to be possible. An analysis with a more
general spectrum for a more realistic model of turbulence is of paramount
importance to justify the use of the RG.

A consistent description of MHD far from equilibrium is still absent, but this
thesis highlights several aspects of the functional integral formulation with regard
to the symmetries of the system and proposes possible ways to study this system
non-perturbatively.

London, March 2014 Prof. Dimitri D. Vvedensky
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Abstract

In this thesis we investigate properties of equilibrium and non-equilibrium
systems by means of renormalization group (RG) analysis. In the study of the
d-dimensional Coulomb gas, we have formulated a continuum model from the
underlying hypercubic lattice and employed the irreducible differential formu-
lation of the Wilson RG. We have identified a Thouless–Kosterletz transition in
d = 2 and found no non-trivial fixed points for d [ 2. As an example of a non-
equilibrium system, we have investigated properties of quasi-neutral plasmas
which are governed by stochastic magnetohydrodynamic (MHD) equations. The
present method is based upon the Martin–Siggia–Rose field-theory formulation
of stochastic dynamics. We develop a diagrammatic representation for the theory
and carry out a momentum-shell RG of Wilson–Kadanoff type. An infinite set of
diagrams is identified which are marginal in the RG sense. We have shown, in
accordance with the previous literature, that the same problem arises for the
randomly forced Navier–Stokes equation. The problem of marginal variables can
be suppressed by working near equilibrium, where stochastic forcing represents
thermal fluctuations. In a similar manner, we have considered regimes when
MHD equations are subject either to kinetic or magnetic forcing only. In such
models, the macroscopic limit can be taken such that all marginal terms are
irrelevant and the dynamics is governed by linear equations. Furthermore, non-
trivial fixed points are identified in such regimes and limiting values of either
kinematic viscosity or magnetic diffusivity are derived. A consistent description
of MHD dynamics far from equilibrium is still absent. We highlight some of the
aspects of the functional integral formulation with regard to the symmetries of
the system and propose possible ways in which the system can be studied non-
perturbatively.
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Chapter 1
Introduction

1.1 Historical Overview

1.1.1 Quantum Field Theory

The search for unifying principles of quantum mechanics with special theory of
relativity began at the end of the 1920s. However, it had been realized from the
beginning that relativistic quantum field theory was plagued by the insuperable dif-
ficulty of the ultraviolet (UV) divergences. As is now well known, the search for a
solution to the problem of subtraction of UV divergences, lasting from the 1940s
to the 1970s, led to the establishment of a consistent theoretical and mathematical
formulation called the renormalization group (RG). The idea of the RG was orig-
inally formulated by Stuckelberg and Peterman in 1953 [1], and independently by
Gell-Mann and Low in 1954 [2]. At the beginning of the 1970s a number of UV
subtraction schemes were available and were proven to be equivalent. As such the
RG expressed the invariance under different procedures of making the theory finite.

The discovery of the Dirac equation in 1928 has allowed a more precise descrip-
tion of electromagnetic interactions with charge particles. This framework, which
consists of quantum and relativistic mechanics to describe such interactions, is known
as quantum electrodynamics (QED). At the time, it was known that the rest mass
of an electron in the classical relativistic framework, which is treated as a sphere
of radius R, was divergent in the point particle limit. As such, it was hoped that
quantum mechanics would reconcile the problem. In 1934 Weisskopf carried out a
first consistent calculation which established that a contribution to the mass of the
electron is also divergent (logarithmically). This was attributed to interactions with
virtual photons of arbitrarily high momentum due to the absence of the small scale
cut-off in QED. It was understood that these infinities are of profound importance
and form the essence of the theory. Subsequent research into the nature of infinities
established that logarithmic divergences persisted in the calculation of other physical
quantities. It was noticed that by forming particular combinations of such physical
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2 1 Introduction

quantities the infinities would cancel. The lack of a deeper understanding into the
problem made it difficult to interpret these results.

Following experimental measurements of the Lamb shift in 1947 by Lamb and
Retherford [3] and subsequent theoretical calculation, which was in a good agreement
with the experiment, reassured the methodology behind reshuffling the infinities
between physical quantities. The general idea of the method is the following. The
initial theory is characterized by bare parameters such as electron mass and charge,
{m0, e0}. One then introduces a momentum cut-off, which renders the integrals finite
but otherwise arbitrary. Then, the observed quantities are calculated as a function of
the bare parameters and the cut-off to a given order. If one then inverts the resultant
relations to express the bare quantities as a function of the cut-off and the observed
parameters, then upon substitution of those into observable/measurable quantities, the
infinities which are carried by the cut-off cancel. Most importantly, these quantities
are then insensitive to the cut-off, so by taking the limit � → ∞, they remain finite.

This procedure led to remarkable agreements with the experiment, but it lacked
a physical interpretation. One of the attempts to justify renormalization was given
by Bogoliubov and others [4], which linked the problem of infinities in the bare
parameters to a mathematical problem of a correct definition of singular products of
distributions. A more physical interpretation consisted of the fact that the introduction
of � meant that quantum field theories give a correct picture up to a given scale,
beyond which some unknown physics take place. Renormalizable theories then were
thought off as those which are insensitive to this unknown behavior.

In 1950s it was noted that massless theories have another peculiar property. In
massive theories electric interactions can be defined through the Coulomb force
between particles at rest. In massless theories, such a definition is no longer feasible
and one seeks to introduce an arbitrary energy (mass) scale with respect to which one
can define renormalized charge. Since this scale is arbitrary one can define another
scale and, hence, an effective charge which would give the same physical results.
The transformation from one set of parameters to another, which would not alter the
physics, were then called the RG transformation.

Renormilizability gradually emerged as new law of nature, namely that all phys-
ical theories are renormalizable. Application of RG methods led to the triumph of
quantum field theory. Subsequent development in non-Abelian gauge theories led to
the construction of theories of combined weak and electromagnetic interactions. In
1973 Wilczek and Politzer [5–7] discovered asymptotic freedom using RG methods.
Thus, by the mid-1970s a complete quantum field theory (QFT) description of all
fundamental forces except gravity was proposed, which formed the Standard Model.
The RG was an indispensable tool in this development.

1.1.2 Statistical Mechanics

In the context of critical phenomena the RG was developed as a tool to understand
systems in which fluctuations persist to a macroscopic scale. The theory of critical
phenomena primarily deals with second order-phase transitions. Examples include
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Fig. 1.1 The spins are correlated over a finite length, the correlation length. Kadanoff argued that
by regarding a set of spins within the region of the correlation length as a single block spin, it may
be a plausible to derive an effective theory of long interactions. This marked the beginning of the
renormalization group in the context of statistical mechanics. As depicted in the diagram one begins
by dividing the lattice into blocks with spacing b. By prescribing some sort of coarse-graining rule,
the individual blocks of size bd are assigned a spin. Since the lattice spacing now differs from the
original lattice all linear scales are reduced by a factor of b. One then obtains are coarse-grained
version of the original model

liquid-vapor or magnetic transitions. These phenomena fall into a class of problems
where fluctuations penetrate all length scales of the system. Such problems are diffi-
cult to treat mathematically as there are many coupled degrees of freedom. The first
attempts to understand such phenomena relied on the assumption that the system
can be described by the means of a few macroscopic variables and the microscopic
structure, such as atom spacings and the range of interactions, are not relevant for
the macroscopic description. Intuitively this means that physics on very different
scales decouples. As an example consider classical mechanics, where it is implic-
itly assumed that the atomic level interactions are irrelevant for, say, a description
of terrestrial body dynamics. These considerations lead to the mean field theory
description of critical phenomena (Fig. 1.1).

A characteristic feature of second order phase transition is that near the transition
quantities of interest, such as the correlation length, diverge. Other physical quantities
of interest either vanish or diverge as one approaches the transition point. The success
of the mean field theory (MFT) description was seriously questioned by numerical
and experimental studies. It failed to correctly predict the exponential behavior of
physical quantities near the transition. The concept of universality predicted by MFT,
namely that quantities diverge by the same exponents, regardless of the microscopic
picture, still survived, but in a more limited sense. Universality properties seemed to
depend on dimensions and symmetries of the system.

Such phenomena, namely, the coupling of different scales was new to physicists
at the time and posed a great conceptual difficulty. Predictions of MFT have shown
that there are systems where such decoupling of degrees of freedom is not always
appropriate. Thus, it seems that the problem of infinities, which were first encountered
in QFT found their way back into the theory of critical phenomena. Recall that, in
QFT, it is the microscopic scale which when send to zero caused such divergences,
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whereas in critical phenomena the problem is due to the fact that a macroscopic scale,
namely the correlation length, went to infinity.

A conceptual break through was made by Kadanoff [8], which was later formalized
by Wilson [9–12]. Kadanoff’s formulation argued, in the context of the Ising model,
that near criticality averaging over groups of spin (microscopic variables) assigns to
the original system another corresponding physical system having the same behavior
at long distances.

This transformation can then be iterated. If this procedure generates an effective
interaction whose asymptotic form is independent of the initial microscopic behavior
one then finds a mechanism to explain universality. This is manifested by the existence
of fixed points of this iteration procedure. At this point we would like to spend some
time to explain the Wilson-Kadanoff RG in some more detail, as it forms the basis
of our analysis in this thesis.

1.2 Wilson-Kadanoff Renormalization Group

1.2.1 Definition of a Renormalization Group Transformation

The basic idea is to study large-scale properties of a theory by partial elimination of
short-scale degrees of freedom. The change in the effective theory through elimina-
tion of degrees of freedom and subsequent rescaling can be visualized as a dynamic
flow in the space of theories with a fixed cutoff. Scaling behavior can be identified
with the existence of fixed points in the dynamic flow. The concept of universality
is then understood from the properties of the manifold in the proximity of a fixed
point. Our discussion will closely follow [13, 14] (Fig. 1.2).

In the context of dynamical problems, the RG acts on the space of dynamic
probability distributions, which are characterized by the equations of the form:

∂v (x, t)

∂t
− K (v) = f (x, t) , (1.2.1)

where v is a physical field, K (·) is some functional of the physical field variable
and f is the noise term. These are most conveniently described in a path-integral
representation using the Martin-Siggia-Rose action [15]. For hydrodynamics driven
by random noise, the generating functional is:

Z =
∫

D [v]D
⎡
v̂
⎢

e−S[v,v̂,�], (1.2.2)

where S is the action which depends on the physical field v, the conjugate noise field
v̂ and the cut-off � and has the following form:
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Fig. 1.2 The diagram depicts the flow of couplings in the parameter space under the action of RG
transformation. The relevant variables are those which direct the flow away from a fixed point while
irrelevant variables drive the flow towards a fixed point

S
⎡
v, v̂

⎢ =
∫

ddx dt v̂ (x, t) · F
⎣
x − x′, t − t′

⎤ · v̂
⎣
x′, t′

⎤

+ i
∫

ddx dt v̂ (x, t) ·
⎥

∂v (x, t)

∂t
− K (v)

⎦
. (1.2.3)

In Fourier space, a cut-off is introduced to render the integrals finite in the UV region.
Note that, in the context of critical phenomena, the existence of a cut-off is natural.
Its origins can be traced to lattice models, which have an intrinsic minimum scale.
The quantity F

⎣
x − x′⎤ carries the information about the noise statistics. The field

variables are separated into a low and high wave number components:

v (x, t) = v> (x, t) + v< (x, t) , (1.2.4)

such that the field is projected onto
⎡
�b−1,�

⎢
and

⎡
0,�b−1

⎢
wave numbers,

respectively. Projections onto
⎡
�b−1,�

⎢
represent microscopic degrees of freedom,

which we seek to eliminate. The parameter b measures the degree of filtering, with
1 ≤ b < ∞. The probability distribution for the low-pass filtered fields remains
unchanged by integrating out high-pass filtered fields, i.e. the large-scale properties
of the systems are not altered. The generating functional for the effective theory then
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takes the form:

Z =
∫

D
⎡
v<

⎢
D

⎡
v̂<

⎢
eSeff(v<,v̂<). (1.2.5)

In general, the form of Seff
⎣
v<, v̂<

⎤
would be different and involve new interactions

which were not present in the original formulation. The next step in the RG program
is rescaling. We seek to restore the cut-off. The rescaling operation includes rescaling
of both the space and time variables and the fields:

v< (x, t) → bαv
(

b−1x, b−zt
)

. (1.2.6)

The scaling exponents α and z are to be determined. Note that, the above operations
do not alter the probability distribution, which describes large-scale properties of the
theory. Although we have restored the cut-off to its original length, we have reduced
the density of points in Fourier space, so the number of degrees of freedom in the
effective action has been reduced. Collectively all these manipulations form the RG
transformation, which can be visualized as a map which transforms one probability
distribution into another, or equivalently one action into another:

Rb : S → S′, (1.2.7)

where S′ is the effective action. As we have mentioned, the RG transformations can
be visualized as a flow in the parameter space. Given the action, the probability
distribution is completely specified by the coupling constants, which form a set of
parameters μ:

μ = (u1, u2, . . . , un) . (1.2.8)

The RG transformation can be thought of as a transformation from one set of
parameters to another:

Rbμ = μ′, (1.2.9)

where μ′ is a set of parameters which are coefficients in front of field variables in
S′. The coefficients strongly depend on the cut-off, as it describes the scale to which
a given description in terms of μ is valid. The necessity to restore the cut-off then
becomes apparent as it allows direct comparison between the two sets μ and μ′,
since both are dependent on �.

So far, the elimination of small-scale degrees of freedom was considered over
the

⎡
�b−1,�

⎢
shell in momentum space. By successively eliminating the degrees

of freedom further, we observe that the RG transformation obeys the following rule
(closure):

Rb (Rbμ) = Rb2μ, (1.2.10)

which results in the peculiar form of field rescaling. However, since there is no inverse
of the Rb it does not form a group but a semi-group. A fixed point under Rb in the
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parameter space satisfies:
Rbμ

∗ = μ∗. (1.2.11)

In general this would be a non-linear equation. However, if the presence of a fixed
point can be established, the above equation can be linearized in its vicinity. Formally
we can write μ = μ∗ + δμ. The RG operator can then be linearized if we ignore
corrections of order O

⎣
δμ2

⎤
and higher. The fixed point equation reduces to an

eigenvalue problem:
RL

b δμ = δμ′. (1.2.12)

The solution can be written in its most general form as a linear combination of the
eigenvectors:

δμ′ =
∑

j

tjb
yj ej, (1.2.13)

where byj is an eigenvalue of ej. Depending on the sign of yj, the variables, being
either positive, negative or zero, Wilson classified them as relevant, irrelevant and
marginal, respectively. A subspace C , where yj < 0 ∀ ej ∈ C defines a critical
surface.

Points on C will be pushed towards the fixed point, while points defined not on
the critical surface with yj > 0 will drive away from the fixed point. In case of
the marginal variables, when yj = 0, the situation becomes more complicated since
nothing can be inferred about the behavior of the variable in a linear approximation.
As has been emphasized by Wilson [9–12], the terms which can be neglected in the
RG analysis crucially depend on the irrelevancy of these variables. A resolution of
such cases usually requires a higher-order analysis (e.g. higher-order loop expansion).

The quantities of interest such as critical exponents can be explicitly calculated
in the vicinity of a fixed point. A concept of a manifold in the parameter space C
allows one to introduce the idea of universality in a natural manner. Theories which
share the same relevant variables near a fixed point will have the same large-scale
properties. Therefore, all such theories will have the same critical exponents.

1.2.2 Renormalization Group in Field Theory and Statistical
Mechanics

In statistical mechanics the divergence of the correlation length is responsible for the
difficulty of analyzing the system near a phase-transition. To be more specific we
consider a loop integral which one encounters in the φ4 theory [16, 17]:

ISM =
�∫

0

ddq
ξ−2 + q2 . (1.2.14)
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At the critical point the correlation length goes to infinity, therefore the behavior of
the integral I is completely determined by the dimensionality of the system:

lim
ξ→∞ ISM =

⎧⎪⎨
⎪⎩

d > 2 convergent,

d = 2 logarithmically divergent,

d < 2 divergent.

(1.2.15)

The divergence comes from the infra-red (IR) region. For d = 1 we observe that the
integral behaves as:

lim
ξ→∞ ISM =

�∫

0

q−2dq
∫

d�, (1.2.16)

where
∫

d� is an integral over the surface of a unit sphere. Analogous integrals are
encountered in QFT. However QFT is formulated to have the Lorentz metric so
formally the integrals are analogous once QFT is re-written to have a Euclidean
metric by means of a Wick rotation. More importantly the integral reads:

IQFT = lim
�→∞

�∫

0

ddq

m2
0 + q2

, (1.2.17)

where m0 is a particle’s mass, which we assume is non-zero. The integral behaves as:

IQFT =

⎧⎪⎨
⎪⎩

d > 2 divergent,

d = 2 logarithmically divergent,

d < 2 convergent.

(1.2.18)

The divergence comes from the UV region. The two integrals behave very differently.
While in QFT it is the UV cut-off which is responsible for the divergence of the loop
corrections in statistical mechanics the correlation length plays the role of the IR
cut-off. In the first case the theory does not posses an intrinsic minimum scale so one
naturally looks to send � → ∞. On the contrary, in statistical mechanics the cut-off
is natural but one is interested in properties of the system near a phase transition when
the IR cut-off goes to zero. In that sense we can see that RG program implemented
in QFT is rather different from the Wilson-Kadanoff scheme.

In this work we will be only concerned with lowering the cut-off, as opposed
to increasing the cut-off, as one would do in QFT. Note that, in the RG procedure,
the cut-off is lowered incrementally � → �b−1 → �b−2 → · · · , so the loop
corrections which are generated:

ISM =
�∫

�b−1

ddq
ξ−2 + q2 → · · · , (1.2.19)
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Fig. 1.3 A hypothetical
solution to the differential
equation is represented by
a black curve. The value of
the function, at some time
t > t′′ > t′, is independent of
whether we choose to specify
the function at t′ or t′′

are finite at every stage of the RG program. It follows that the divergence occurs as
a result of the iteration of the RG. The study of such iterations of equilibrium and
non-equilibrium models will be the main focus of this thesis.

1.2.3 Applications of Renormalization Group in Mathematical
Physics

RG methods can be very useful in branches of physics other than high-energy physics
and statistical mechanics. For instance, it can be used to solve partial differential
equations (PDE) [18, 19]. Here, we would like to outline the general principle behind
the method (Fig. 1.3).

Group theory has been an indispensable tool in analyzing symmetries of
various PDE encountered in mathematical physics. If the equation admits a sym-
metry, together with the boundary conditions, the solution can be constructed in
terms of the invariant of this symmetry group. Further, one can re-express the origi-
nal PDE in terms of the canonical variables which can simplify the resultant equation
to an ordinary differential equation. The foundations of this method have been laid
by Sophus Lie and it is a well established methodology.

However, there exists another symmetry which is not of the actual equation but
of the solution itself. Consider a transformation which leaves the solution invariant
under a change in the initial condition. Such a symmetry is called a renormalization
group. The mathematical aspects are very similar to those employed in QFT [20, 21].
The RG symmetry is an exact symmetry of the solution and some boundary values.
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The difference between the blocking concept of Wislon-Kadanoff RG lies in the fact
that the latter is an approximate semi-group.

The sole purpose of the method is to form additional differential equations which
complement the original one. In the trivial case these additional equations simply
reduce to the original differential equation and nothing can be inferred from the
analysis. In non-trivial cases these additional RG equations are different and can
be solved, providing a solution to the original equation. Let us illustrate the above
concepts with a particular trivial example from [18]. Consider an equation:

dx

dt
= V (x) . (1.2.20)

The solution is invariant under a time shift, so the solution will generally depend on
two initial parameters t0 and x0. Thus, we can write:

x (t) = X (t − t0, x0) such that X (0, x0) = x0. (1.2.21)

The last equation is simply the re-statement of the initial condition. Consider now
that we want to choose an initial condition at some later instant in time t1 > t0 such
that the initial position, x1, lies on the same trajectory:

x1 = X (t1 − t0, x0) . (1.2.22)

Then, we can readily deduce the following:

x (t) = X (t − t0, x0) = X (t − t1, x1) , (1.2.23)

or more generally we can write (t0 = 0):

X (t, x0) = X (t − τ, X (τ, x0)) . (1.2.24)

The above relation is a condition of functional self-similarity. The above transfor-
mation obeys the axioms of a group. Thus a transformation:

t ⇒ t1 = t − τ, g ⇒ g1 = f (τ, g) (1.2.25)

obeys the group composition law:

g2 = f
⎣
τ + τ ′, g

⎤ = f
⎣
τ ′, g1

⎤
. (1.2.26)

the identity element corresponds to τ = 0 and the inverse by −τ . However, one
often encounters the multiplicative version of the above transformations by changing
variables to t = ln x and τ = ln λ. As such, the statement of functional self-similarity
reads:

F (x, g) = F
(

xλ−1, F (λ, g)
)

. (1.2.27)



1.2 Wilson-Kadanoff Renormalization Group 11

From the above equation one can derive a differential equation satisfied by F (x, g):

{
−x

∂

∂x
+ β (g)

∂

∂g

}
F (x, g) = 0, (1.2.28)

which follows from taking a derivative of the function with respect to λ and then
setting λ = 1. The β-function is:

β (g) = ∂F (λ, g)

∂λ

∣∣∣∣
λ=1

. (1.2.29)

The resulting equation is the well known Callan-Symanzik equation [22–24] derived
in the QFT context, while in the Soviet literature the equation goes by the name of
Ovsyannikov’s compensation equation [25, 26]. The β-function, which is referred
to as the Gell-Mann-Low or the Wilson function, plays a central role in the further
analysis. Given the β-function the equation can be solved by the method of char-
acteristics. If we parametrize the function F (x (s) , t (s)) such that it stays invariant
along the characteristic we have:

dF(s)

ds
= ∂F

∂x

dx

ds
+ ∂F

∂g

dg

ds
= 0. (1.2.30)

It follows that along the characteristics we have:

dx

ds
= −x, (1.2.31)

dg

ds
= β (g) . (1.2.32)

Thus, the characteristic has the form:

− dx

x
= dg

β (g)
. (1.2.33)

Upon integration, this is the celebrated Gell-Mann-Low formula. The values of the
β-function such that:

β (g∗) = 0, (1.2.34)

form the basis of the search for the asymptotic solutions of the RG equation since the
main contribution to the integral in the above equation comes from the region when
β (g∗) = 0. Note that our derivation did not make any explicit reference to QFT as
such, while it is precisely the machinery used in the field theory. In this sense RG
has a much wider range of applications. To give an example, consider the following
equation [19]:

∂u (x, t)

∂t
= σ

∂

∂x
um (x, t)

∂u (x, t)

∂x
, (1.2.35)
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which is often encountered in mathematical physics. For instance, for m > 1 the
equation is referred to as the equation of porous medium. From the symmetry argu-
ment of the differential equation it can be shown [19] that the solution has a general
form:

u (x, t) = u0f

(
x√

στ0um
0

,
t

τ0

)
, (1.2.36)

where u0 = u (x0, t0), τ0 is a temporal time scale, which is introduced through a
boundary condition ∂tu|(x0,t0) = u0t . The property of functional similarity requires
the following relationship to be satisfied:

u (x, t) = u0f

(
x√

στ0um
0

,
t

τ0

)
= u1f

(
x − x1√
στ1um

1

,
t − t1

τ1

)
. (1.2.37)

Through a number of algebraic manipulations and use of the boundary conditions,
the requirement of functional self-similarity translates into the following functional
relation:

f (ξ, η) = f (ξ1, η1) f
(
(ξ − ξ1)

√
φ (ξ1, η1) f −m (ξ1, η1), (η − η1) φ (ξ1, η1)

)
.

(1.2.38)
the parameters ξ1 and η1 play the role of the free parameter τ in our previous trivial
example. The function φ is:

φ = ∂ ln f

∂η
. (1.2.39)

We do not intend to give full account of the above result but merely to illustrate the
principle of the use of the RG in mathematical physics. The Gell-Mann-Low-like
equations are derived by taking derivatives with respect to the free parameters ξ1
and η1. Since we have looked at the problem using additive properties rather than
multiplicative, the parameters ξ1 and η1 are set to zero, not one. The resulting two
differential equations are not equivalent to the original equation and form additional
conditions which supplement the original PDE. We will not go into any more details
but simply state the solution which follows from the solutions of the RG equations:

u (x, t) = u0 (1 + Bt)b ψ

(√
bB

σum
0

x (1 + Bt)−(mb+1)/2

)
, (1.2.40)

where B and b are some parameters, which are specified by the boundary conditions.
This non-trivial result is a great example of how RG can be implemented in

branches of physics other than QFT and SM. In addition it illustrates a deep
mathematical concept of an exact symmetry of the solution with respect to the choice
of the initial condition. We believe that the above presentation of the RG as it stands
is more transparent than if one is to understand RG solely from the QFT perspec-
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tive. In connection with the Kadanoff-Wilson picture we would like to paraphrase
E. V. Teodorovich [18] “...one should not identify the RG method solely with
Kadanoff’s procedure for reducing the number of modes in a multi-mode system by
sequential averaging ...”. There are purely mathematical differences between the two
which have to do with the group structure etc., and conceptually the self-similarity
property is an exact symmetry of the solution while Wilson-Kadanoff RG is a trans-
formation between various models which share the same large-scale properties.
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Part I
Equilibrium Statistical Mechanics:

Coulomb Gas



Chapter 2
d-Dimensional Coulomb Gas

2.1 Introduction

As was discussed in the previous chapter, renormalization group serves as a very
powerfull tool in the study of strong interactions and fluctutations, which occur near
continuous phase transitions. This powerful method presents a conceptual framework
which allows for capturing complex natural phenomena in terms of a few mesoscopic
variables. In this chapter we will consider an equilibrium system of charges, however,
the concept can also be applied in the context of dynamic critical phenomena, which
will be the subject of later chapters.

The d-dimensional Coulomb gas is a statistical mechanical problem where parti-
cles of equal or opposite charge interact through the Coulomb potential. The model
has been extensively studied in the past and forms one of the classical problems in
field theory [1].

To this end, most of the theoretical investigations have been centered around the
particular case of two dimensions. In this regime the model undergoes the celebrated
Kosterlitz-Thouless phase transition [2]. The integer-charged particles interact via
a logarithmic potential. Alternatively, the charges can be viewed as vorticies which
carry integer vorticity. At low temperature these vorticies are bound in pairs and
carry zero vorticity and thus form an insulating state. At higher temperatures the
binding of vorticies decreases until at some critical temperature, Tc, the vorticies are
completely unbound, thereby forming a conducting state.

The special property of the Kosterlitz-Thouless phase transition is the behavior
of the correlation functions. In the metallic state one observes screening because the
charges are unbound. As a result, the correlation function decays exponentially fast.
In the insulating phase the correlation function decays algebraically, meaning that
charge fluctuations are correlated over infinite distances, hence the correlation length
is divergent throughout the insulating phase. By contrast, in the Ising model and
other second-order phase transitions, the correlation function, above and below some
critical temperature, Tc, decays exponentially fast and only at the critical temperature
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the correlation functions decays algebraically. For that reason the insulating phase
is referred to as a phase of quasi-long-range order.

The two-dimensional Coulomb gas falls into the same universality class as other
statistical mechanical models such as the XY-model and the two-dimensional sine-
Gordon model [1, 3]. Such mappings provide a relationship between seemingly
different physical systems and provide an efficient tool for analyzing two dimensional
problems in statistical mechanics [4, 5].

A part from the connection of the Coulomb gas to other physical systems, the
d-dimensional Coulomb gas can be used as a model of a classical one-component
plasma [5, 6]. Such plasmas are found in astrophysical systems such as white dwarfs,
for example. In this thesis we will be primarily concerned with the plasma charac-
teristics of the Coulomb gas rather than its connections to other physical models.
Although the system does not undergo a phase transition for spatial dimensions
d > 2, a renormalization group analysis can be utilized to study the role of the
intrinsic length scales of the system in the behavior physical quantities such as the
Debye length. Such calculations can be important in numerical simulations of plasma
[7]. In the next section we will give an overview of renormalization group (RG) tech-
niques used so far in the study of the Coulomb gas, before we present the Coulomb
gas model formally and analyze it using a somewhat simpler RG method.

2.1.1 Renormalization Group Methodologies

If we go back to the particular case of d = 2, it must be stressed that while the argu-
ment in favor of Kosterlitz-Thouless phase transition can be relatively easily demon-
strated by means of a perturbative RG analysis, the extrapolation of the behavior of
the correlation function to the whole phase-space has proved to be a difficult task [1].
So, here we acknowledge some of the rigorous results which have been established
for the d = 2 Coulomb gas [8]. Consider the metal-insulator phase space diagram:

Consider the red region in the Fig. 2.1, which represents the region of phase space
sufficiently far from the critical line. It has been shown by [9] that the correlation
function does indeed follow a power law decay for any z. For the opposite region,
shaded blue, which is also sufficiently far from the critical line a somewhat similar
result, but slightly weaker, consists of a proof that the correlation function decays
exponentially for |z| > 0, subject to a specific boundary condition [10]. A num-
ber of other results which are concerned with rigorous proofs on the behavior of
the correlation functions in different regions of the phase-space can be found here
[8, 9, 11]. In this thesis we will not be concerned with these matters any further. Our
analysis will be limited strictly to the vicinity of critical points.

As we have established in the first part of the thesis, there are a number of tech-
niques to execute the RG program. One by means of field theory methods and the
other by using the Wilson-Kadanoff style of RG. An extensive RG study of the
Coulomb gas in two dimensions using the formalism of field theory is given by Amit
[12]. In their detailed chapter the authors computed higher-order corrections in the
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Fig. 2.1 Phase-space diagram of the d = 2 Coulomb gas. The two parameters of the system are z,
the fugacity, and β, the inverse of the temperature. The thick line represents a critical line. To the
right of the critical line, the low temperature regime, the system is in an insulating state. Vorticies
are bound together, with the net vorticity being zero. To the left of the critical line charges are
unbound which forms a metallic state

flow equations, to those originally derived by Kosterlitz [2], and have shown that
vorticies with multiple charges are irrelevant in the RG sense. This investigations did
not consider any other dimensions other than d = 2.

A version of real-space renormalization group RG has been given by [13]. In
this chapter the RG flow has been derived for all physical dimensions. The coarse-
graining of the action in the momentum space has received most of the attention in
the literature. A paper exploiting the Wegner-Houghton [14] approach, for example,
is [15]. A detailed calculation which exploits a standard cumulant expansion is [16].

In this thesis we present yet another RG scheme, which, to our knowledge, has not
been used in the literature in the context of d-dimensional Coulomb gas. It is based
on irreducible differential formulation of the Wilson-Kadanoff RG and has been
successfully applied in the past to other models in statistical mechanics [17]. As
suggested by the word irreducible, the object of interest is the vertex function or the
Legendre transform of the free energy. The RG is formulated in terms of the integro-
differential equation which describes the infinitesimal change of the vertex function
under sequential mode averaging. Once compared to earlier mentioned calculations,
we believe that this approach has distinct advantages in terms of conciseness and
simplicity of the resultant integrals.

In the next section we will introduce the Coulomb gas model formally and derive
the continuum theory in order to facilitate the Wilson-Kadanoff style of RG.
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2.2 Functional Integral

2.2.1 Lattice Model

We begin by considering a d-dimensional Cartesian lattice whose spacing is a and
with a total volume of V . Charges ±e can occupy the sites ik of this lattice and there
is a Coulomb interaction between these charges. For d = 3, the lattice Coulomb
potential between sites i j and ik is

Ui j = 1

4∂a|i j − ik | . (2.2.1)

There are two main reasons for putting the system on a lattice. First, the lattice
avoids the singularity of the Coulomb potential at the origin, which would otherwise
necessitate introducing a short-range cut-off. This issue arises when we take the
continuum limit, but for the moment there are no short-range singularities. The other
advantage of a lattice formulation is that we can develop a field-theoretic formulation
for the partition function, which facilitates the identification with mean-field limits
and perturbations therefrom.

The canonical partition function ZN for N charges qk = ±e at positions ik , for
k = 1, . . . , N , is

ZN =
∑
{ik }

{qk=±e}

1

N ! exp

⎡
⎢⎣−β

2

∑
j,k

1→ j,k→N

∞
q jU (i j , ik)qk

⎤
⎥⎦ , (2.2.2)

where the factor N ! is to ensure correct Boltzmann counting, β = 1/kB T , kB is
Boltzmann’s constant, T is the absolute temperature, the prime on the summation
indicates that the terms j = k are excluded, and the factor of 1/2 is to avoid double
counting. The associated grand canonical partition function α is

α =
∞∑

N=0

zN aNdZN , (2.2.3)

where z = eβμ is the fugacity and μ is the chemical potential.
The evaluation of α proceeds by using the Hubbard–Stratonovich transformation,

which is a standard operating procedure for such Hamiltonians. Based on the identity

exp

(
b2 y2

2a

)
=

(
a

2∂

)1/2 ∞∫

−∞
e− 1

2 ax2+bxy dx, (2.2.4)
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the Hubbard-Stratonovich transformation for a symmetric N×N matrix A with real
eigenvalues is

e
1
2

⎧
i j Ai j si s j =

⎪
1

|A|(2∂)N

⎨1/2 ∫
· · ·

∫
e− 1

2

⎧
i j (A

−1)i j δi δ j +⎧
i δi si

⎩
N∏

i=1

dδi

)
,

(2.2.5)

where |A| is the determinant of A. This identity is used to represent α as

ZN =
∑
{ik }

{qk =±e}

1

N ! exp

⎡
⎢⎣−β

2

∑
j,k

1→ j,k→N

∞
q j U (i j , ik)qk

⎤
⎥⎦

=
⎪

1

|U|(2∂)N

⎨1/2 ∑
{ik }

{qk =±e}

1

N !
∫

· · ·
∫

e− 1
2 β−1 ⎧

jk δi j (U
−1) jkδik +i

⎧
k δik qk

⎩
N∏

k=1

dδik

)
,

(2.2.6)

in which U is the matrix with entries given in Eq. (2.2.1) and the factor of i on the right-hand
side is necessary for consistency of signs in Eqs. (2.2.5) and (2.2.6).

2.2.2 Continuum Limit

Consider first the determination of U−1. In the case of continuous variables, we have the
definition [18]

∫
U−1(x, y)U(y, z) dy = φ(x − z), (2.2.7)

in which φ(x) is the Dirac delta-function. Since, according to Eq. (2.2.1),

U (x, y) = 1

4∂ |x − y| , (2.2.8)

Equation (2.2.7) is seen to be the definition of the fundamental solution for Poisson’s
equation:

≤2U (x − x∞) = −φ(x − x∞). (2.2.9)

Hence,

U−1(x, y) = −φ(x − y)≤2
x . (2.2.10)
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Thus, in the continuum limit, the first term in the exponential on the right-hand side of
Eq. (2.2.6) becomes

1

2β

∑
jk

δi j (U
−1) jkδik ∗ 1

2β

∫ ∫
δ(x) U−1(x, y) δ(y) dx dy

= − 1

2β

∫
δ(x)≤2δ(x) dx. (2.2.11)

The summation over the qk on the right-hand side can now be carried out:

∑
{ik }

{qk =±e}

exp

(
i

N∑
k=1

δik qk

)
=

∑
{ik }

{qk =±e}

N∏
k=1

eiδik qk =
∑
{ik }

N∏
k=1

(
e−ieδik + eieδik

)

=
∑
{ik }

N∏
k=1

[
2 cos(eδik )

]

=
[∑

ik

2 cos(eδik )

]N

. (2.2.12)

In the continuum limit, the summation becomes an integral and this term simplifies to

∑
{ik }

{qk =±e}

exp

(
i

N∑
k=1

δik qk

)
=

⎪
1

ad

∫
2 cos

[
eδ(x)

]
dx

⎨N

. (2.2.13)

Carrying out the summation over N in Eq. (2.2.3) yields the continuum limit of the
grand canonical partition function α:

α =
⎪

1

|U|(2∂)N

⎨1/2 ∫
exp

[
1

2β

∫
δ≤2δ dx

] ∞∑
N=0

zN aNd

N !
⎪

1

ad

∫
2 cos

[
eδ(x)

]
dx

⎨N

D[δ]

=
⎪

1

|U|(2∂)N

⎨1/2 ∫
exp

[
1

2β

∫
δ≤2δ dx

]
exp

[
z
∫

2 cos(eδ) dx
]

D[δ]

=
⎪

1

|U|(2∂)N

⎨1/2 ∫
exp

⎪∫ [
1

2β
δ≤2δ + 2z cos(eδ)

]
dx

⎨
D[δ]. (2.2.14)

The right-hand side of this equation is the functional integral for the Debye problem. The first
term represents a ‘kinetic energy’, which results from the Coulomb interaction, and the second
term a ‘potential energy’, which arises from the Hubbard–Stratonovich transformation. The
prefactor is not important for calculating thermodynamic averages, and will be omitted in what
follows. A somewhat more concise form of this representation is obtained by introducing a new
field variable δ = ξ

∀
β, in which case we obtain
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α =
∫

exp

⎪∫ [
1
2 ξ≤2ξ + 2z cos(αξ)

]
dx

⎨
D[ξ], (2.2.15)

with α = e/
∀

kB T .
There are several advantages to the functional integral representation of a statistical mechan-

ical problem over other formulations:

1. A large class of problems can be represented as functional integrals, ranging from equilibrium
statistical mechanics, as the Debye problem, to non-equilibrium statistical dynamics. The
Ising model serves as the canonical example for this approach, and the expression obtained
in Eq. (2.2.15) has several formal similarities with the functional integral for the Ising model.

2. Mean-field limits are straightforward to identify, for example, as Gaussian field theories,
corrections to which can be evaluated with various expansions. For the case at hand, the
mean-field limit corresponds to the Debye–Hückel theory. This will shown explicitly in the
next section.

3. Renormalization-group calculations can be carried out using either the Wilson or field-
theoretic formalism. Time-dependence, vector fields, and other degrees of freedom enter
such calculations simply as summations/integrals in the evaluation of individual terms. The
structure of the RG expansion is determined by the polynomial terms in the functional
integral.

4. An alternative form of the functional integral in Eq. (2.2.15) is obtained by performing an
integration by parts on the first term:

α =
∫

exp

⎪
−

∫ [
1
2 (≤ξ)2 − 2z cos(αξ)

]
dx

⎨
D[ξ]. (2.2.16)

In writing this expression, we have neglected the surface term, which is a finite constant and
so does not affect our subsequent calculation.

2.3 Mean-Field Approximation

The simplest evaluation of the functional integral (2.2.15) is to expand the cosine function and
retain terms only to quadratic order:

cos(αξ) = 1 − (αξ)2

2
+ · · · , (2.3.1)

which yields a Gaussian field theory,

α =
∫

exp

⎪
1

2

∫ [
ξ≤2ξ + 4z − 2z(αξ)2

]
dx

⎨
D[ξ]

= e2zV
∫

exp

[
1

2

∫ (
ξ≤2ξ − τ−2ξ2

)
dx

]
D[ξ], (2.3.2)

where V is the volume of the system and τ−2 = 2zα2. We will again neglect the constant
prefactor, since we are interested only in averages.
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The functional Gaussian integrals in Eq. (2.3.2) are carried out by transforming to a Fourier
representation of decoupled modes. For a finite volume V , the Fourier transform ξk of ξ(x) is

ξk =
∫

V

ξ(x)e−ik·x dx, (2.3.3)

where, since ξ(x) is real, we have that ξ−k = ξ∈
k . The inverse Fourier transform is

ξ(x) = 1

V

∑
k

ξkeik·x. (2.3.4)

The largest wavevector in this summation is λ ⇒ 2∂/a, where a is the lattice constant on our
Cartesian lattice, and the smallest is 2∂/L , where V = L3 is the volume of the system and
which approaches zero as L ∗ ∞. These are referred to as ultraviolet and infrared cutoffs,
respectively. Critical quantities should not depend on the values of these cutoffs. Since there is
one wavevector per volume (2∂/L)d in k-space, summations over k are converted into integrals
according to

∑
k

=
∫

dk
(

L

2∂

)d

= V
∫

dk
(2∂)d

. (2.3.5)

This transcription is exact only in the thermodynamic limit (V ∗ ∞). The transformed grand
canonical partition function thereby reads

α =
∫ ∏

k

dξk exp

[
− 1

2V

∑
k

(k2 + τ−2)|ξk|2
]
. (2.3.6)

Consider now the evaluation of the two-point correlation function 〈ξ(q)ξ(q∞)≥ which, in the
limit V ∗ ∞, is calculated as

〈ξ(q)ξ(q∞)≥ = 1

α

∫
Dξ(k)

[
ξ(q)ξ(q∞)

]
exp

[
−

λ∫

0

dk
(2∂)d

(k2 + τ−2)|ξ(k)|2
]

= φ(q + q∞)
q2 + τ−2 . (2.3.7)

Performing the Fourier transform yields the real-space correlation function

〈ξ(r)ξ(0)≥ =
∫

dq
(2∂)3

e−iq·r

q2 + τ−2 = e−r/τ

4∂r
. (2.3.8)

The quantity

τ−2 = 2zα2 = 2ze2

kB T
(2.3.9)
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is seen to correspond to a screening length. To obtain an explicit expression for this quantity,
we need an expression for the fugacity z. This can be obtained from the following two standard
statistical mechanical relations for the grand canonical partition function

〈N ≥ = 1

α

∞∑
N=0

N zN aNdZN = z
β ln α

βz
, (2.3.10)

PV

kB T
= ln α = 2zV + ln

⎪∫
exp

[
1

2

∫ (
ξ≤2ξ − τ−2ξ2

)
dx

]
D[ξ]

⎨
, (2.3.11)

where P is the pressure of the system and we have used Eq. (2.3.2) in the second equation.
We now consider the high temperature limit, in which case τ−2 is small. Since the second term
on the right-hand side of Eq. (2.3.11) is the only term with an explicit z-dependence, this limit
suppresses the contribution from this term in the derivative in Eq. (2.3.10), leaving

〈N ≥ = 2zV, (2.3.12)

or

2z = 〈N ≥
V

= n0, (2.3.13)

where n0 is the average particle density. Hence, the decay length reduces to

τ =
(

kB T

n0e2

)1/2

, (2.3.14)

which is the standard result for the Debye length [6]. The validity of this results rests on the
assumption that the cos(αξ) is a slow varying function of position, which is certainly true at
high temperatures.
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Chapter 3
Renormalization Group Analysis

3.1 Coarse-Graining of the Partition Function

The renormalization-group (RG) transformation of the functional integral in
Eq. (2.2.15) will be performed by carrying out an infinitesimal form of a loop expan-
sion, which subsumes irreducible terms in the usual diagrammatic representation [1].
With the grand canonical partition function in Eqs. (2.2.15) and (2.2.16) written in
the form

� =
∫

exp

[
−A

({∂(k)})
]

D[∂(k)], (3.1.1)

where

A = 1

2

∫
dk

(2α)d
k2∂(k)∂(−k) − 2z

∫
cos

[
δ

∫
dk

(2α)d
eik·x∂(k)

]
dx, (3.1.2)

the coarse graining part of the RG transformation within this formulation can be
expressed in closed form as a differential equation with respect to the renormalization
parameter φ,

ξ A

ξφ
= 1

2

∫
d�

(2α)d
ln

[
Aq,−q −

∫
dp

(2α)d

∫
dp→

(2α)d
Aq,p A−1

p,p→ Ap→,−q

]
, (3.1.3)

in which

Ak,k→ ∞ τ2 A

τ∂(k)τ∂(k→)
(3.1.4)

is the second functional derivative of A with respect to the Fourier components of
the fluctuating field, the integrals of p and p→ are over the range 1 ≤ p, p→ ≤ λ, the
integral of � is over the unit sphere in d-dimensions which, in our case, is d = 3.
The second functional derivatives in Eq. (3.1.4) are
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τ2 A

τ∂(k→→)τ∂(k→)
= k→ 2τ(k→→ + k→) + f (k→→ + k→), (3.1.5)

where we have introduced the notation

f (k→→ + k→) ∞ 2zδ2
∫

cos

[
δ

∫
dk

(2α)d
eik·x∂(k)

]
ei(k→→+k→)·x dx . (3.1.6)

The functional derivatives in Eq. (3.1.3) are therefore given by

Aq,−q = 1 + f (0), (3.1.7)

Aq,p = f (q + p), (3.1.8)

Ap,p→ = p2τ(p + p→) + f (p + p→), (3.1.9)

Ap,−q = f (p − q) . (3.1.10)

The remaining required quantities, A−1
p,p→ , are the elements of the matrix inverse of the

coefficients in Eq. (3.1.9). Since we will carry out the coarse-graining transformation
only to order f 2, which is already accounted for by Aq,p and Ap,−q, we require only
the leading term in this quantity, which is

A−1
p,p→ = 1

p2 τ(p + p→) + · · · . (3.1.11)

Substituting the expressions in Eqs. (3.1.7), (3.1.8), (3.1.10), and (3.1.11) into
Eq. (3.1.3) gives

∫
d�

(2α)d
ln

[
1 + f (0) −

∫
dp

(2α)d

∫
dp→

(2α)d
f (q + p)

1

p2 τ(p + p→) f (p→ − q)

]

=
∫

d�

(2α)d
ln

[
1 + f (0) −

∫
dp

(2α)d

f (q + p) f (−p − q)

p2

]

=
∫

d�

(2α)d

[
f (0) − 1

2 f 2(0) −
∫

dp
(2α)d

f (q + p) f (−p − q)

p2 + · · ·
]

= [
f (0) − 1

2 f 2(0)
]
Kd −

∫
d�

(2α)d

∫
dp

(2α)d

f (q + p) f (−p − q)

p2 + · · · ,

(3.1.12)

in which Kd = Sd/(2α)d and Sd is the surface area of the unit sphere in d dimensions.
The term f (0), according to Eq. (3.1.6), is given by

f (0) = 2zδ2
∫

cos
[
δ∂(x)

]
dx . (3.1.13)

Similarly, f 2(0) is
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f 2(0) = 4z2δ4
∫

cos
[
δ∂(x)

]
dx

∫
cos

[
δ∂(x→)

]
dx→

= 4z2δ4
∫

dx
∫

dx→ cos
[
δ∂(x)

]
cos

[
δ∂(x→)

]
. (3.1.14)

By invoking the trigonometric identity

cos x cos y = 1
2

[
cos(x + y) + cos(x − y)

]
, (3.1.15)

this integral can be written as

f 2(0) = 2z2δ4
∫

dx
∫

dx→ cos
{
δ
[
∂(x) + ∂(x→)

]}

+ 2z2δ4
∫

dx
∫

dx→ cos
{
δ
[
∂(x) − ∂(x→)

]}
(3.1.16)

The approximate evaluation of the integrals on the right-hand side of this equation
can be carried out by introducing relative and average coordinates [2, 3],

ξ = x − x→, η = 1
2 (x + x→), (3.1.17)

in terms of which we have

∂(x) = ∂(η + 1
2ξ), ∂(x→) = ∂(η − 1

2ξ) . (3.1.18)

If we now use the fact that after several RG transformations ∂ becomes a slowly-
varying function of its argument,

∂(η ± 1
2ξ) ≤ ∂(η) ± 1

2ξ ·∗∂(η), (3.1.19)

from which we obtain

∂(x) + ∂(x→) = ∂(η + 1
2ξ) + ∂(η − 1

2ξ) ≤ 2∂(η), (3.1.20)

∂(x) − ∂(x→) = ∂(η + 1
2ξ) − ∂(η − 1

2ξ) ≤ ξ ·∗∂(η) . (3.1.21)

By using these results and the transformation in Eq. (3.1.17), we obtain

f 2(0) = 2z2δ4
∫

dξ

∫
cos

[
2δ∂(η)

]
dη + 2z2δ4

∫
dη

∫
cos

[
δξ ·∗∂(η)

]
dξ

(3.1.22)
The integral over ξ in the first term on the right-hand side of this equation is the
volume V of the system. Hence,

2z2δ4
∫

dξ

∫
cos

[
2δ∂(η)

]
dη = 2z2δ4V

∫
cos

[
2δ∂(η)

]
dη . (3.1.23)
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Then, by expanding the cosine function in the second integral and retaining only the
first two terms, we obtain

2z2δ4
∫

dη

∫
dξ

{
1 − 1

2

[
δξ ·∗∂(η)

]2
}

= 2z2δ4V 2 − z2δ6 I1

∫
∗∂(η)·∗∂(η) dη,

(3.1.24)

in which we have defined

I1 =
∫

ξ2 dξ . (3.1.25)

Thus,

f 2(0) = 2z2δ4V 2 + 2z2δ4V
∫

cos
[
2δ∂(η)

]
dη − z2δ6 I1

∫
∗∂(η)·∗∂(η) dη .

(3.1.26)

The evaluation of the remaining integral on the right-hand side of Eq. (3.1.12) pro-
ceeds by writing

∫
d�

(2α)d

∫
dp

(2α)d

f (q + p) f (−p − q)

p2

= 4δ4z2
∫

d�

(2α)d

∫
dp

(2α)d

1

p2

{∫
cos

[
δ∂(x)

]
ei(q+p)·x dx

}{∫
cos

[
δ∂(x→)

]
e−i(q+p)·x→

dx→
}

= 4δ4z2
∫

dx
∫

dx→ cos
[
δ∂(x)

]
cos

[
δ∂(x→)

] ∫
d�

(2α)d
eiq·(x−x→)

∫
dp

(2α)d

eip·(x−x→)

p2

(3.1.27)

The integrals over q and p will be represented as

I2(x − x→) ∞
∫

d�

(2α)d
eiq·(x−x→), (3.1.28)

I3(x − x→) ∞
∫

dp
(2α)d

eip·(x−x→)

p2 . (3.1.29)

Again invoking the trigonometric identity in Eq. (3.1.15) enables us to write

∫
dx

∫
dx→ cos

[
δ∂(x)

]
cos

[
δ∂(x→)

]
I2(x − x→)I3(x − x→)

= 1

2

∫
dx

∫
dx→ cos

{
δ
[
∂(x) + ∂(x→)

]}
I2(x − x→)I3(x − x→)

+ 1

2

∫
dx

∫
dx→ cos

{
δ
[
∂(x) − ∂(x→)

]}
I2(x − x→)I3(x − x→) .

(3.1.30)
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Using these results and the transformation (3.1.17) in the integrals on the right-hand
side of Eq. (3.1.30) then yields

∫
dη

∫
cos

[
2δ∂(η)

]
I2(ξ)I3(ξ) dξ +

∫
dη

∫
cos

[
δξ ·∗∂(η)

]
I2(ξ)I3(ξ) dξ

(3.1.31)

The first term may be written as

{∫
I2(ξ)I3(ξ) dξ

} ∫
cos

[
2δ∂(η)

]
dη . (3.1.32)

Upon expansion of the cosine function in the second integral and retaining only the
first two terms, we obtain

∫
dη

∫
dξ

{
1 − 1

2

[
δξ ·∗∂(η)

]2
}

I2(ξ)I3(ξ)

=
∫

dη

∫
I2(ξ)I3(ξ) dξ − 1

2

∫
dη

∫ [
δξ ·∗∂(η)

]2
I2(ξ)I3(ξ) dξ

= V
∫

I2(ξ)I3(ξ) dξ − δ2

2

{∫
ξ2 I2(ξ)I3(ξ) dξ

}∫
∗∂(η)·∗∂(η) dη . (3.1.33)

Thus,

∫
d�

(2α)d

∫
dp

(2α)d

f (q + p) f (−p − q)

p2

= 2δ4z2 AV − δ6z2 B
∫ [∗∂(η)

]2
dη + 2δ4z2 A

∫
cos

[
2δ∂(η)

]
dη, (3.1.34)

where we have defined

A ∞
∫

I2(ξ)I3(ξ) dξ , B ∞
∫

ξ2 I2(ξ)I3(ξ) dξ . (3.1.35)

By collecting the results in Eqs. (3.1.13), (3.1.26), and (3.1.34) and substituting into
Eq. (3.1.12) yields the coarse-graining transformation to one-loop order:

ξ A

ξφ
= − 1

2 z2δ4V 2 Kd − δ4z2 AV + zδ2 Kd

∫
cos

[
δ∂(x)

]
dx

+ 1
4 z2δ6 I1 Kd

∫ [∗∂(η)
]2

dη + 1
2 z2δ6 B

∫ [∗∂(η)
]2

dη

− 1
2 z2δ4V Kd

∫
cos

[
2δ∂(η)

]
dη − z2δ4 A

∫
cos

[
2δ∂(η)

]
dη . (3.1.36)
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3.2 Differential Scale Transformations

The first two terms on the right-hand side of Eq. (3.1.36) are constants and represent
the effect of the integrated modes on the grand canonical partition function. These
terms are important for the direct calculation of � [1], but will not be considered
here. The remaining terms represent the effect of coarse graining on the terms in A
in Eq. (3.1.1), with the last two terms representing corrections to the ‘bare’ form of
A. Therefore, the lowest order effect of coarse graining is given by the following
subset of terms on Eq. (3.1.36):

ξ A

ξφ
= 1

2 z2δ6(
I1 Kd

2
+ B)

∫ [∗∂(x)
]2

dx + zδ2 Kd

∫
cos

[
δ∂(x)

]
dx . (3.2.1)

This equation must be supplemented by two additional operations to obtain the
complete recursion relations: the rescaling of k to restore the original ranges of
integration, and the rescaling of ∂ to maintain the coefficient of the quadratic term in
A. The latter operation is necessary to maintain the spatial range of the fluctuations
under the RG transformation [cf. Eq. (2.3.2) et seq.]. The rescalings of the wave
vector and the field are given by:

k→ = bk, (3.2.2)

∂(b−1k) = b(d+2)/2∂→ (k) , (3.2.3)

where b = eτφ. Denoting the rescaling operator by R, the change in A induced by
the scale changes is defined as

A
({

∂→ (k→)}) + βA
({

∂→ (k→)}) = RA ({∂ (k)}) . (3.2.4)

After applying the transformations set by Eqs. (3.2.2) and (3.2.3) we obtain:

RA ({∂ (k)}) = 1

2

∫
dk→

(2α)d

(
k→)2

∂→(k→)∂→(−k→)

− 2zbd
∫

cos

[
δb1−d/2

∫
dk→

(2α)d
eik→·x→

∂→(k→)
]

dx→ .

By considering an infinitesimal transformation and taking the limit of τφ ∀ 0 yields
the differential rescaling of A

lim
τφ∀0

RA − A

τφ
= − 2zd

∫
cos

[
δ∂→(x→)

]
dx→

+ 2z
∫

sin

[
δ∂→(x→)

]
δ∂→ (x→) (

1 − d

2

)
dx→ .

http://dx.doi.org/10.1007/978-3-319-06154-2_2
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Thus, the total change in A is

ξ A

ξφ
= 1

2 z2δ6
(

I1 Kd

2
+ B

) ∫ [∗∂(x)
]2

dx − 2z

(
d − δ2 Kd

2

) ∫
cos

[
δ∂(x)

]
dx

+ 2z
∫

sin

[
δ∂(x)

]
δ∂ (x)

(
1 − d

2

)
dx .

The recursion relations can now be written:

d∂

dφ
= 1

2
z2δ6

(
I1 Kd

2
+ B

)
∂, (3.2.5)

dz

dφ
= z

(
d − δ2 Kd

2

)
, (3.2.6)

d (δ∂)

dφ
= δ∂

(
1 − d

2

)
. (3.2.7)

By demanding the invariance of the kinetic term under RG transformation, we restrict
the phase space to the flow in the coupling phase space only. The resultant recursion
relations are

dz

dφ
= z

(
d − δ2 Kd

2

)
, (3.2.8)

dδ

dφ
= δ

((
1 − d

2

)
− 1

2 z2δ6
(

I1 Kd

2
+ B

))
. (3.2.9)

3.3 Recursion Relations and Fixed Points

In the differential equations derived in the previous section we noted that the cut-off
dependence is incorporated into the limits of the integrals such as I3 (x). This is due
to the fact that we have considered the change in the Hamiltonian due to eliminating
integrating the Fourier mode around |k| = 1 shell. The modes in the shell 1 < |k| < λ

were averaged out using a saddle point approximation.

3.3.1 d = 1

The differential form of the recursion relations is:

dz

dφ
= z

(
d − δ2 Kd

2

)
, (3.3.1)
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Fig. 3.1 Renormalization
group trajectories for 1D
Coulomb gas. The non-trivial
fixed point (z+; δ+), is a
saddle point. There is only
one trajectory which takes
the couplings to this fixed
point, depicted in red. Any
perturbations away from this
line will eventually drive the
system away from that fixed
point

dδ

dφ
= δ

(
1

2
− z2δ6

8α
(I1 + 2α B)

)
. (3.3.2)

By considering
�
z = �

δ = 0, we can determine the critical points. Apart from the
trivial fixed point (z 0;δ 0) = (0; 0) , there are four non-trivial points (z±;δ±) =(
±α2 (I1 + 2α B)− 1

2 ;±∈
2α

)
. However we are only interested in the flow in the

positive quadrant of the phase space, so we only have to investigate the stability of
two points: (z 0;δ 0) and (z+;δ+). By linearizing the equations around a fixed point,
z ∀ z⇒ + σ and δ ∀ δ⇒ + τ, its stability is determined. Thus, the trivial point is
characterized by the following linear differential equations:

d

dφ

(
σ

τ

)
=

(
1 0
0 1

2

) (
σ

τ

)
. (3.3.3)

The matrix is diagonal therefore its eigenvectors and the corresponding eigenvalues,
η1 and η2, can be determined immediately. Since η1, η2 > 0, we conclude that the
point (z0;δ0) is unstable. By linearizing around (z+;δ+) the dynamics is governed
by the following coupled differential equations:

d

dφ

(
σ

τ

)
=

(
0 −δ+z+

2−δ+
z+ −3

)(
σ

τ

)
. (3.3.4)

The associated eigenvalues are η1,2 = − 3
2 ± 1

2

∈
9 + 4α . We conclude that (z+;δ+)

is a saddle point. The phase space diagram associated with 1D Coulomb gas is
depicted in Fig. 3.1.
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This result qualitatively agrees with the previous study carried out by Kosterlitz
[4], where the author used real-space renormalization group technique. The phase-
space diagram suggests that in d = 1 the Coulomb gas undergoes a metal-insulator
phase transition. If the initial parameters of the system are to the left of the red line
then the system is driven towards the infinite termperature regime where charges are
unbound. This forms a metallic state. The system defined to the right of the diagram
is driven towards the low temperature regime where it behaves as an insulator.

3.3.2 d = 2

It is known that in 2D, the Coulomb gas undergoes the Kosterlitz–Thouless transition.
We can use the equations derived in the previous section to reproduce the well
known phase-diagram describing the Kosterlitz–Thouless transition. Consider the
phase space trajectories near the critical line.

dz

dφ
= 1

4α

(
8α − δ2

)
z, (3.3.5)

dδ

dφ
= − 1

2 z2δ7
(

I1

4α
+ B

)
. (3.3.6)

Make the substitution:
y = −8α + δ2, (3.3.7)

which leads to the following set of equations:

dz

dφ
= − 1

4α
yz, (3.3.8)

dy

dφ
= −z2 (8α + y)4

(
I1

4α
+ B

)
. (3.3.9)

Close to the transition temperature, y 
 1, so terms involving y of order 1 should
be retained. The resultant equations are:

dz2

dφ
= − yz2

4α
, (3.3.10)

dy2

dφ
= −yz2 (8α)4

(
I1

4α
+ B

)
. (3.3.11)

These equations can now be written:

dz2

dφ
= c

dy2

dφ
, where c = 1

(8α)4 (I1 + 4αB)
, (3.3.12)
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Fig. 3.2 Renormalization
group trajectories for 2D
Coulomb gas.The thick line of
constant gradient is the critical
line below which the system is
in an insulating state. Above
the critical line the system is
in a metallic state and acts as
a good conductor

which allows us to solve it. The solution is a hyperbola:

z2 − cy2 = const. (3.3.13)

By rescaling the y variable the phase space flow is depicted in Fig. 3.2. The critical
temperature is found along the trajectory z2 − cy2 = 0.

3.3.3 d = 3

It is known that in 3D Coulomb gas there is no phase transition. This happens because
in the first term in the differential equation for δ there is a sign change for d ≥ 3. Thus,
unless we are prepared to accept imaginary fugacity, there is no phase transition for
dimensions above d = 2. This result agrees with the study carried out by Kosterlitz
[4], where the author arrives at the same conclusion. The phase space flow is depicted
in Fig. 3.3. The RG equation are:

dz

dφ
=

(
3 − δ2

4α2

)
z, (3.3.14)

dδ

dφ
= −δ

2

(
1 + z2δ6

(
I1

4α2 + B

))
. (3.3.15)

There is no phase transition and trajectories are driven towards the high temperature
regime. The system is in a metallic state throughout. Despite the fact that no transition
takes place at d ≥ 3, we can exploit renormalization group equations to study
the behavior of other quantities such as the Debye length. We recall the definition,
ψ−2 = 2zδ2. Hence
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Fig. 3.3 The δ–z plane illustrates the renormalization group trajectory for 3D Coulomb gas. The
blue surface represents the Debye length as a function of two variables, ψ−2 (z, δ) = 2zδ2. The
behavior of the Debye length under RG is depicted by the red curve which lives on the ψ−2 (z, δ)

surface

dψ−2

dφ
= 2δ2

(
d − δ2 Kd

2

)
z + 4zδ2

((
1 − d

2

)
− 1

2 z2δ6
(

I1 Kd

2
+ B

))
.

(3.3.16)
The behavior of the Debye length is depicted by a red line in Fig. 3.3. Our renormal-
ization group equations are valid for up to the second order in z and the definition
of the Debye length is valid in the limit of the Debye–Hückel–Bjerrum theory (high
temperature limit). So we choose a particular subspace of the phase-space where
these two regimes hold. Coincidently, this regime corresponds to the phase-flow in
the proximity of the trivial fixed point (z⇒, δ⇒) = (0, 0). Thus, in d = 3, Eq. (3.3.16)
gives a correct description of the behavior of the Debye length under coarse-graining:

dψ

dφ
= ψ

(
δ2 Kd

2α2 − 4

)
+ δ2

2ψ3

(
I1

4α2 + B

)
. (3.3.17)

The cut-off dependence is incorporated in the B integral. If we choose λ ∀ ∼, the
integral simplifies and becomes a function of the volume only. In order to study the
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behavior of the Debye length as a function of the UV cut-off we would require to
modify our RG equation. Thus, in principle one could investigate variations of the
Debye length as a function of the system size. Alternatively, one could investigate
similar variations but with respect to the cut-off which is a linear scale associated
with the lattice spacing of the original lattice model.

3.4 Conclusions and Remarks

The 3D result for the behavior of the Debye length can find an application of the RG
analysis of the Coulomb gas to plasmas. We have in mind, in particular, the so-called
particle-in-cell (PIC) method [5–7], which has become a powerful technique for the
simulation of plasmas. In the PIC method, the positions and velocities of the particles
are defined continuously, fields are defined at discrete spatial points, but both fields
and particles are defined at discrete times. Particles and fields are advanced sequen-
tially in time using fields interpolated from the discrete grid to the continuous particle
locations. Source terms for the field equations are accumulated from the continuous
particle locations to the discrete mesh locations. The fields are then advanced one
time step, whereupon the loop repeats. The accuracy of the PIC method depends on
the discretization in time and space. While the consequences of temporal discretiza-
tion for a particular scheme, such as leap-frog method, are relatively straightforward
to identify, the effect of spatial discretization is much more difficult to quantify [5].
Deviation from spatial continuity towards discretization induces noise into the the
dynamics of the system. Moreover physical quantities which characterize plasma
would also be expected to be affected by spacial discretization.

By drawing on the similarity of the Coulomb gas on a lattice and a specific
realization of the PIC scheme, one can investigate the effect of changing the scales
of the system on the physical parameters of the system. The lattice spacing and the
system size enter naturally into the RG approach, as the the ultraviolet and infrared
cut-offs, respectively. The RG equations for the Debye length with the effect of the
length scales incorporated into the equations, which allows us to quantify how the
coupling constants of the coarse-grained system are affected by particular choices
of the system size and how this is reflected in the RG trajectories.
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Part II
Non-Equilibrium Statistical Mechanics:

Randomly Stirred Magnetohydrodynamics



Chapter 4
Turbulent Flows

4.1 Introduction

Turbulence is a widespread phenomenon in the dynamics of fluids. For decades, it
has stimulated scientific research across various fields of mathematics, engineering
and physics. Turbulent motion can be made visible by observing cloud formation in
the atmosphere, for example. An overwhelming number of possible patterns in the
motion underlies the complexity of this phenomenon. Turbulence is a state of a fluid
which, in the case of neutral fluids, is governed by the Navier-Stokes equation. The
problem of turbulence lies in the difficulty of describing a solution to the dynamical
equation.

Turbulent motion can be characterized by its ability to stir fluids and dissipate
kinetic energy. It is composed of eddies which are irregular zigzag patterns in the
flow which can be visualized as a random swirling of the fluid, which typically arises
when the speed of the flow exceeds a particular threshold. Understanding turbulent
motion is of great importance in science. In engineering applications, for example
in aerodynamics, a solid grasp of the phenomenon can improve the maneuverability
of jet fighters or improve fuel efficiency for commercial airlines [1]. On the other
hand, in internal combustion engines, turbulence enhances the fuel mixing with the
oxidizers to augment efficiency [1]. There are even biological applications, which
include studies of abrupt blood flows in heart’s ventricles [1].

From the experience of our terrestrial world it is not apparent why one may
want to study charged fluids, as oppose to the neutral fluids, since all electrical
conductors are mainly solids. However, most of the universe is in the plasma state
that can interact with magnetic fields which penetrate it [2]. Such systems often
can be conveniently described by magnetohydrodynamics (MHD), which unifies the
fields of electromagnetism and fluid mechanics. The scope of various phenomena
which can be described by MHD is vast. Much research has gone into understanding
solar systems, for example [3, 4]. In geophysics, MHD equations are applicable to
conduction cores of the planets where the magnetic field is generated by dynamo
action [5].

E. Barkhudarov, Renormalization Group Analysis of Equilibrium 43
and Non-equilibrium Charged Systems, Springer Theses,
DOI: 10.1007/978-3-319-06154-2_4, © Springer International Publishing Switzerland 2014
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MHD turbulence is intimately related to hydrodynamic turbulence, in the sense
that often the formalism developed for the former can be generalized to the latter.
The study of turbulence can be taken along two different lines: one, which focuses
on practical applications of turbulence and treats it as a technical problem. and the
other, which treats turbulence more as a physical phenomenon and tries to develop
tools towards its understanding. Over the past decades, with the development of
computer power, numerical simulations have become an indispensable tool in turbu-
lence research and often is the only way to check the validity of analytical models.
However, numerically attainable Reynolds numbers are still too small to understand
real turbulence and, thus, studies of high Reynolds number turbulence are of a more
academic nature [6]. In fact, numerical simulations are of even greater importance
to MHD turbulence, since there do not exist any practical laboratory set ups for such
systems.

In this thesis we aim to study turbulence in charged systems using analytical tools.
There exists a number of different approaches, each with its strengths and limitations.
In order to appreciate the wealth of techniques which exist to date it is instructive to
proceed towards a more quantitative description of the problem.

4.2 Mathematical Formulation

In order to facilitate a quantitative discussion of turbulence in neutral and charged
flows, we begin with an introduction to the basic equations of motion. The dynamics
of neutral fluids is governed by the Navier-Stokes (NS) equation [7, 8]:

∂v
∂t

+ v · →v = −1

ρ
→ p + ν→2v + 1

ρ
F, (4.2.1)

where v is the velocity field, ρ is the density of the fluid, which can be a function of
both position and time, ν is the kinematic viscosity, and F represents any additional
external forces which act on the fluid. The specification of this force is subject
to the problem at hand. The NS equation can be seen to express the conservation
of momentum. Physical flows should also satisfy the continuity equation, which
represents conservation of mass in the flow:

∂ρ

∂t
+ → · (ρv) = 0. (4.2.2)

In our analysis we will be concerned primarily with incompressible flows, where ρ is a
constant. Thus, the continuity equation translates to the condition of incompressibility
of the flow:

→ · v = 0. (4.2.3)
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This means that the form of the velocity field is solenoidal, meaning that the
divergence of the field v is zero at all points in space. Further specification of the prob-
lem must include boundary conditions. We are primarily concerned with unbounded
flows where the appropriate boundary condition is:

v ∞ 0; ∂v
∂xi

∞ 0 ∀i as x ∞ ≤. (4.2.4)

To appreciate the role of various terms in the NS equation it is convenient to re-write
it in a dimensionless form. This can be achieved by the following transformations:

L−1x = x∗, L−1Ut = t ∗, U−1v = v∗, ρ−1U−2 p = p∗. (4.2.5)

For the moment we assume that F = 0. Then, by substituting the above relations in
to the dynamical equation, we get:

∂v∗

∂t ∗
+ v∗ · →∗v∗ = −→∗ p∗ + ν

LU
→∗2v∗. (4.2.6)

Thus, we naturally derive a useful dimensionless quantity, the Reynolds number:

R = LU

ν
. (4.2.7)

The dimensional quantities L and U are generally chosen so that they reflect the
global geometry, such as the size of the apparatus, and the mean flow of the fluid.
The Reynolds number measures the relative strength of the linear term and the non-
linear interaction. The Reynolds number is a single parameter which determines the
character of the flow in a particular geometry and its value can be used to measure
the onset of turbulence. This suggest the following physical interpretation:

R ∀ inertial forces

viscous forces
. (4.2.8)

When viscous forces are dominant the flow is smooth. Such flows can be well treated
analytically. As the Reynolds number increases the inertial forces dominate the
dynamics. The smoothness of the flow is lost through the appearance of rapid and
irregular fluctuations in the velocity field.

The equation of motion for electrically conducting fluids are more complicated
because they must accommodate the effect of electromagnetic fields. The effect of
electromagnetic interactions is fully captured by Maxwell’s equations:

→ × B = μ0j + 1

c2

∂E
∂t

, (4.2.9)

→ · B = 0, (4.2.10)
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→ × E = −∂B
∂t

, (4.2.11)

→ · E = ρp

ε0
, (4.2.12)

where B is the magnetic field, E is the electric field, μ0 magnetic permeability, ε0
permitivity of free space, c is the speed of light, and ρp is the charge density. Further,
we would like to make some simplifying assumptions. We only consider electromag-
netic variations which are non-relativistic [2], which affects the form of Ampere’s
law. From Eq. (4.2.11) we have E/L ∀ B/T , where, as before, the quantities denote
typical values. Using this we can asses the magnitude of the displacement current,
which gives:

E

c2T
∀ V 2

c2
|→ × B| , (4.2.13)

where V is the ratio L/T . It follows that when electromagnetic variations are much
smaller that the speed of light, the displacement current is negligible.

Plasmas which move with non-relativistic speed are subject to magnetic and elec-
tric fields, which exert force on the moving fluid. This relationship is captured by
Ohm’s law:

j = σ (E + v × B) , (4.2.14)

where j is the current density and σ is the electric conductivity. The above two
equations are now sufficient to derive the induction equation:

∂B
∂t

= → × (v × B) − 1

σμ0
→ × (→ × B) . (4.2.15)

Application of vector identities and the solenoidal property of the magnetic field
finally lead to the expression:

∂B
∂t

= → × (v × B) + η→2B, (4.2.16)

where η = 1/μ0σ is the magnetic diffusivity. If of interest, quantities such as j and
E can be determined once the problem is solved for the magnetic and velocity fields.

We now have to consider the form of the force F in Eq. (4.2.1), which arises from
the electromagnetic interaction of the fluid element. The force exerted on the charge
qi is the Lorentz force qi (E + vi × B) . The force exerted on the fluid element is
the sum of forces exerted on each charge in the fluid element. A fluid element is a
macroscopic quantity and at this point we make another assumption that the plasma
is quasi-neutral. This means that the fluid element is effectively neutral and we can
ignore the effect of E because the total charge of the fluid element is approximately
zero, δq ∀ 0. It follows that the Lorentz force acting on the fluid element is:

FL = j × B, (4.2.17)
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Bringing all the equations together we end up with a set of four equations:

∂v
∂t

= −1

ρ
→ p + ν→2v − v · →v + 1

ρμ0
(→ × B) × B, (4.2.18)

∂B
∂t

= → × (v × B) + η→2B, (4.2.19)

→ · v = 0, (4.2.20)

→ · B = 0. (4.2.21)

These are our defining equations of MHD. At this point it is appropriate to introduce
new dimensionless quantities which are absent in hydrodynamics. When the induc-
tion equation is re-written in a dimensionless form, the relative strength of non-linear
and linear terms is weighted by the magnetic Reynolds number:

Rm = LV

η
. (4.2.22)

Clearly, a combination of dimensionless number is also a dimensionless quantity.
One such combination which may be of interest is the magnetic Prandtl number,
which is the ratio of the magnetic Reynolds number to the Reynolds number:

P = ν

η
. (4.2.23)

This quantity measures the relative effects of viscous versus magnetic diffusion rates.
The importance of these dimensionless quantities in analytical studies is two fold:
various limits can simplify the defining equations, for example note that, in the
limit when Rm ∈ 1, the induction equation reduces to the diffusion equation and
Rm can be used as an expansion parameter in perturbation treatments. Further, in
computational studies, for example in hydrodynamics, the Reynolds number provides
the scale of the mesh resolution for accurate modeling [6].

Our further analysis will be centered around Eq. (4.2.1) and Eqs. (4.2.18)–(4.2.21).
Eventually we will introduce random forcing into Eqs. (4.2.18) and (4.2.19) to model
sustainable turbulence, but the motivation for that will become clear from our later
discussion on the renormalization group and its applications to hydrodynamics and
MHD. To this end we have simply introduced the MHD equations. Various methods
of analysis is the subject of the next section.

4.3 Methods to Study Turbulence

In this section we aim to briefly touch upon various methods used to date to analyze
turbulence. Most of the discussion will be in the context of the NS equation. Because
this equation has been studied to a much greater extent, an elementary presentation
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Fig. 4.1 Consider some com-
plicated path depicted on the
right. The black line represents
the trajectory in space traced
out by a hypothetical particle.
The trajectory is highly irregu-
lar and the small-scale details
are analogous to the eddies
in a turbulent flow. If such a
trajectory is reproducible, like
in a stationary jet flow, these
paths can be superimposed
to give a smoother trajectory
such as the one shown on the
right. The red line represents
a precise smooth trajectory,
while the cloud represents
statistical variations from the
red line

of various methods can be more compactly presented using the NS equation only.
Extensions to MHD are often rather straightforward but the algebraic form of the
resultant equations becomes much more complicated. The various topics discussed
in this section by no means form an exhaustive list in the field of turbulence studies.
On the contrary, it can be viewed as rather subjective. As guiding principles, we have
selected topics which, on an elementary level, can give either useful and important
results, or present the problem in a new light.

4.3.1 Closure Modeling

Solving the NS equation with realistic boundary conditions in fully developed tur-
bulence has proved to be a very difficult task. The profound problem lies in the
non-linear interaction of many degrees of freedom across all length and time scales.
One is then naturally led to look for other ways to quantify the complexity of the
exact solutions. For instance, if we have a look at the flows from jets, it is apparent
that there is some detail on every observable scale in the form of ever smaller eddies.

Perhaps, sometimes this is too much information for practical purposes and maybe
we can get away with a more blurred image of these flows. Thus, we wish to sacrifice
detail for solvability. Inevitably we are led to invoke a statistical description. The
irregularities in the flow occur at random and, therefore, once reproducible, can
be subject to a statistical description. In the case of stationary jet flows we can
take multiple copies of the flow at different times and compute the average [6]. The
average flow will be a smooth function with a better hope for an analytical description
(Fig. 4.1). In practice, however, this is not very useful, since the main task of any
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theory is to be able to make predictions without a priori knowledge of the exact flow.
In other words, we would like to start with the full NS equation and try to model the
behavior of the averaged flows from it. A natural starting point is to break down the
velocity field into the average/mean flow and fluctuations:

v (x, t) = U (x, t) + u (x, t) , (4.3.1)

where U is the average flow and u are fluctuations. Upon substitution into the NS
equation we obtain:

∂ (U + u)

∂t
+ (U + u) · → (U + u) = −1

ρ
→ (P + p̃) + ν→2 (U + u) . (4.3.2)

If we now take the average of the above equation we have:

∂U
∂t

+ U · →U + ⇒u · →u〉 = −1

ρ
→ P + ν→2U, (4.3.3)

which follows from the fact that ⇒U〉 = U and ⇒u〉 = 0 by definition. The equation
now has an extra term ⇒u · →u〉, which requires a knowledge of a higher order moment
of the unknown probability distribution. To this end we have one equation and two
unknowns in the form of the average field and the second moment. Any attempt to
derive the dynamics of the

〈
ui u j

⎡
will inevitably introduce a third moment and the

problem will persist. This is known formally as a closure problem [7]. Its origin lies
in the non-linear term of the NS equation and is a general feature of any non-linear
equation.

One possible solution to the problem is to postulate relations between statistical
moments, since in principle an equation of the form

U = f
⎢〈

ui u j
⎡⎣

, (4.3.4)

would render the set of equation closed. Such closure relations are neither exact
nor derivable and can have a very limited range of applications. Such attempts to
solve turbulence problem are usually met in engineering applications. With growing
computer power more elaborate models emerge and it remains an active field of
research [6].

4.3.2 Direct Numerical Simulations

An alternative to closure modeling is to try to solve the NS equation directly, such
methods are known as direct numerical simulation. As can be anticipated this is a
very challenging task, since turbulent flows span across large temporal and spacial
scales. As with any direct simulation method it requires the system to be discretized
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on a grid or a mesh. It should be small enough to capture the smallest eddies in the
flow, yet big enough to incorporate the largest eddies [6]. By calling these two scales
η and L respectively, the number of grid point should roughly satisfy:

N ≥ L/η. (4.3.5)

This ratio of length scales is in fact related to the Reynolds number L/η ∀ R 3/4. By
including appropriate resolution across time scales the overall expense of modeling
3D turbulence goes asR11/4 which, considering that turbulent flows are characterized
by large Reynolds number of order 106 and larger, such modeling is computationally
expensive. Despite the expense of such computations, current numerical simulations
can handle large numbers of grid points for isotropic and homogeneous turbulence
[6]. Another feature of direct numerical simulation, not necessarily in the context
of turbulence, is numerical dissipation or heating. This is an effect due to numerical
approximations which artificially dissipates energy from the system. Sometimes such
effects are favorable in a simulation, since the associated discretization methods are
more stable. However, in the context of turbulence this effect should be minimized,
since high numerical dissipation can over-damp flow fluctuations, leading to the
spurious decay of turbulence [6].

Over the past decades with the development of computer power numerical sim-
ulations have become an indispensable tool in turbulence research and often is the
only way to check the validity of analytical models. However, numerically attainable
Reynolds numbers are still too small to understand real turbulence and, thus, studies
of high Reynolds number turbulence are of a more academic nature.

4.3.3 Analytical Studies

4.3.3.1 Dynamical systems

Perhaps a rather natural framework to study turbulence is in the context of dynamical
systems, since the NS equation falls precisely into the class of problems addressed by
this field [8]. Conceptually this is very helpful, as the emergence of unpredictability of
a deterministic equation can be explained through chaos. For an illustrative example
consider a toy model for the NS equation:

vt+1 − vt = −2v2
t − vt + 1, v0 = ω, t = 0, 1, 2, . . . . (4.3.6)

The first, second and third terms of the right-hand side can be associated with a non-
linear term, the viscous term and the forcing of the true NS equation respectively. The
important property of this map is that it displays sensitivity to the initial condition
which is a reminiscent of chaotic behavior. Furthermore, this equation is simply a
fancy way to write the so called tent map, which is defined as follows:
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xt+1 =
⎤

2xt for 0 ∼ x ∼ 1
2

2 − 2xt for 1
2 ∼ x ∼ 1.

(4.3.7)

This has another important property, namely, the invariance of the measure
(Lebesgue). For if, we consider the initial condition x0 to be uniformly distributed,
then the image of the tent map will also follow a uniform distribution. The fact that
the initial condition is chosen at random rather than being deterministic is almost
irrelevant as a result of Birkhoff’s ergodic theorem, which states that the time aver-
age of some integrable function along the trajectory from a given initial condition is
equal to the ensemble average with the invariant measure.

The lesson to take from the above oversimplified example is this: the analysis
of dynamical systems provides a natural framework for a statistical description of
turbulence and exploits chaos to explain the non-predictability of the flow. However,
apart from these qualitative features little has been done in the field to understand
turbulence. The application of traditional machinery in the form of Lyapunov expo-
nents, attractors etc. is hard to implement for systems with many degrees of freedom
such as the NS equation [9, 10]. This has served as the main obstacle to progress in
this direction [8].

4.3.3.2 Phenomenological Models

Phenomenological theories are based on non-rigorous plausible hypotheses, together
with dimensional arguments, to analyze turbulence. Perhaps surprisingly, such an ap-
proach has given one of the greatest insights into the nature of turbulence. This
methodology allows one to calculate energy spectrum functions, count degrees
of freedom etc. Considerable work on phenomenology is based on the work of
Kolmogorov [11, 12]. These studies were primarily concerned with hydrodynamics,
with the arguments being extended later to MHD. In this section we will outline only
a few results, while more complete reviews can be found in the original papers or
standard textbooks [7, 8, 13, 14].

Together with statistical insight, dimensional analysis can be used to derive the
energy spectrum in turbulent flows. The idea of energy cascades was first put forward
by Richardson [6]. The mechanism of energy transfer in turbulent flows is explained
via local interactions of large eddies, which carry the kinetic energy down to the
smallest eddies, where energy is dissipated through viscous forces. The intermediate
range between the largest eddies and the smallest eddies is called the inertial range.
This idea can be exploited further, for if we make two assumptions, namely, scale-
invariance within the inertial range, and strictly local interactions, then we could
argue that, in fully developed turbulence, we can identify two relevant length scales:
a typical size of the largest eddies, δ, which is comparable to the system size, while
viscosity sets a lower bound η on the size of the smallest eddies. Let us assume
that η ∈ δ. Large-scale eddies are generated by the shear stresses in the flow and
the small scales are being dissipated by viscosity. It is reasonable to conclude that
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there is a mechanism through which there is an energy transfer from large scales,
where energy is being produced, to small scales, where it is dissipated. Moreover
this would require an intermediate or inertial range where energy is neither produced
or dissipated. Then, in equilibrium, the energy flux through the inertial range should
be equal to the rate at which the energy is dissipated. Hence, the energy cascades
across the inertial range, from large to small scales.

The inertial range is shared by both the large-scale energetic regime and the small-
scale dissipative regime. Large-scale eddies are not directly affected by viscosity.
Hence, since the inertial and energetic regions overlap, the energy distribution cannot
be affected by viscosity. On the other hand, small-scale eddies are universal, all the
information about the original geometry is lost, so in the proximity of η, the inertial
range cannot depend on the large-scale structure δ. The energy distribution across
different size eddies in the inertial range should in principle depend on all relevant
scales of the flow:

E = E (δ, ν, r, ε) , (4.3.8)

where ε is the rate of the energy dissipation and r is the typical eddie size. However,
as we have argued, the large-scale and small-scale structures should not influence
the inertial range, thus:

E = E (r, ε) . (4.3.9)

On the grounds of dimensional analysis we can postulate the simplest possible func-
tional relation between the two such that the result has dimension of energy. It follows
that the energy spectrum is:

E ∝ (εr)2/3 . (4.3.10)

This is known as Kolmogorov’s energy spectrum. This is more commonly written
as a −5/3 law in Fourier space. Today it is believed that Kolmogorov’s spectrum is
correct [6].

In the 1960s, the first phenomenological model of MHD turbulence was put for-
ward by Kraichnan [18]. He proposed a different exponent to Kolmogorov’s spec-
trum, namely:

E (k) ∝ k−3/2. (4.3.11)

This was attributed to an interaction of localized modes with an external magnetic
field, which is irrelevant in hydrodynamics.

Kolmogorov’s energy spectrum is a very powerful result. However, it is
immediately evident that phenomenological models cannot account for the full
description of turbulence. To determine proportionality constants one has to fall back
onto experiments and the theory offers no means of computing them explicitly. As
such, phenomenological models must be used in combination with other analytical
methods.
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4.3.3.3 Functional methods

Turbulent flows are necessarily statistical in nature. Thus, it is natural to consider
probability distribution functions which govern such flows. This leads us to the
concept of functional integration methods, which are concerned with averaging over
such probability measures in function space. This functional formalism was initiated
by Hopf [15] when he derived the governing equation of the probability functional,
known as the Hopf equation for the NS equation. The Hopf equation enabled the
evaluation of correlation functions at a single moment in time [16]. Later, the method
was generalized to compute multi-point correlation function at different times. This
is based on work of Lewis and Kraichnan [17] and, in view of its generality, we
outline their methodology.

Consider the generating functional � [Z (x, t)] of a probability distribution
P [v (x, t)]:

� [Z (x, t)] = ⇒exp (i [Z · v])〉 , (4.3.12)

where the dot product denotes:

Z · v ≡
⎥

dx
⎥

dtZ (x, t) · v (x, t) . (4.3.13)

Functional differentiation of � [Z (x, t)] with respect to Zα

⎢
x∗, t ∗

⎣
generates an

average of the velocity field over the probability distribution functional:

δ� [Z (x, t)]

δZα (x∗, t ∗)

⎦⎦⎦⎦
Z=0

= i
〈
vα

⎢
x∗, t ∗

⎣⎡
. (4.3.14)

The goal is to write the evolution equation for the generating functional using the
NS equation. Thus, consider the quantity:

∂

∂t

{
δ� [Z]

δZα (x, t)

}
= i

〈
∂vα (x, t)

∂t
exp (i [Z · v])

⎧
. (4.3.15)

Using the NS equation, the above relationship can be written as:

∂

∂t

{
δ� [Z]

δZα (x, t)

}
= i

⎪⎨
−∂

⎩
vβ (x, t) vα (x, t)

}
∂xβ

− ∂ p

∂xα
+ ν

∂2vα (x, t)

∂xβ∂xβ

)
exp (i [Z · v])

〉
.

(4.3.16)

It follows that the above manipulations transform a non-linear problem in v to a
linear problem in � [Z (x, t)]. The only task now is to express the pressure term
as a functional derivative of � [Z (x, t)]. This can be readily achieved for the NS
equation. The equation can be written as:
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∂

∂t

{
δ� [Z]

δZα (x, t)

}
= i

∂

∂xβ

{
δ2� [Z]

δZα (x, t) δZβ (x, t)

}
+ν

∂2

∂xβ∂xβ

{
δ� [Z]

δZα (x, t)

}
− ∂∂

∂xα
.

(4.3.17)
Here, we follow [17]. Let us introduce a solenoidal dummy field Y, which satisfies:

∂Yβ (x, t)

∂xβ
= 0, (4.3.18)

and Yβ (x, t) ∞ 0 as |x | ∞ ≤. We multiply Eq. (4.3.17) by Yα (x, t) and integrate
over all space:

0 =
⎥

dxYα (x, t)

{
∂

∂t

{
δ� [Z]

δZα (x, t)

}
− i

∂

∂xβ

{
δ2� [Z]

δZα (x, t) δZβ (x, t)

}}

−
⎥

dxYα (x, t)

{
ν

∂2

∂xβ∂xβ

{
δ� [Z]

δZα (x, t)

}
− ∂∂

∂xα

}
. (4.3.19)

Using integration by parts the last term vanishes:

⎥
dxYα (x, t)

∂∂(x, t)

∂xα
= −

⎥
dx∂(x, t)

∂Yα (x, t)

∂xα
, (4.3.20)

because the dummy field Y is solenodial. Since the test field Yα (x, t) is otherwise
arbitrary, the equation should be valid for any realization of this field. It follows that
the term in the brackets must satisfy:

∂

∂t

{
δ� [Z]

δZα (x, t)

}
− i

∂

∂xβ

{
δ2� [Z]

δZα (x, t) δZβ (x, t)

}
− ν

∂2

∂xβ∂xβ

{
δ� [Z]

δZα (x, t)

}
= 0.

(4.3.21)
By further differentiation with respect to Zγ a hierarchy of cumulants can be derived.

The sole purpose of the above reformulation is to present the problem of turbulence
in a new light. To this end the Hopf equation serves as an elegant and rigorous
formulation of the problem. It can also provide new approximation schemes which
are not evident from Eq. (4.2.1) [8].

4.3.3.4 Renormalized Perturbation Theories and Direct Interaction
Approximation

Perturbation methods have been widely used in the context of statistical mechanics
when one is faced with an equilibrium system with weak interactions. A primitive
perturbation series then consists of an expansion with a weak coupling as an expan-
sion parameter. However, one is often interested in the behavior of a system in the
thermodynamic limit where the number of particles N and the volume of the system
V both go to infinity, while the ratio N/V is kept constant. As an example, for a dilute
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neutral gas [19] which interacts via a Lennard-Jones potential, the thermodynamic
limit results in an inhomogeneous expansion, namely the expansion parameter to a
given order has a variety of different dependences on N/V . To overcome this prob-
lem, one effectively re-shuffles the perturbation theory to express it as a power series
in N/V . Then, by assuming a low density regime, such a series can be truncated at
low orders and systematic corrections can be made. In practice this amounts to sum-
ming over an infinite sub-series of the original expansion. This formalism naturally
leads to the introduction of graphs as means of representing algebraic terms in a se-
ries whose topological structure is in one-to-one correspondence with the algebraic
structure of a particular term.

The extension of the above methods to turbulence is a non-trivial task. Turbulence
is a non-equilibrium many-body problem with strong interactions. It is characterized
by a high Reynolds number, so any primitive expansion in this parameter would
necessarily lead to strongly divergent series. As an attempt to improve the behavior
of such a perturbation expansion, one considers so-called renormalized perturbation
theory. In effect this amounts to a re-arrangement of the initial series. We do not wish
to go into technical details here, in part since they are quite involved and eventually
will closely resemble our own calculation. Some of the original work on the subject
can be found in Refs. [20, 21].

The technique of renormalized perturbation theories amount to the following
steps. Starting with a randomly stirred NS equation, an expansion in the non-linear
term is performed. This generates a series expansion for v. Quantities of inter-
est are correlation and response functions. Using the initial expansion for v one
can construct a corresponding series expansion for these functions as well. By
re-expressing the series in terms of graphs, a structure emerges, namely, that the
exact series expansion for either the correlation or the response functions can be
formed by re-defining/renormalizing the bare propagator and the vertex, which are
the building blocks for the former series. This fact substantially reduces the number
of terms/diagrams required in the description. However, this is simply a method and
does not constitute a physical theory. The advantage of the above procedure is that the
initial divergent series has been replaced by one with unknown properties. It might
be convergent or not, or be asymptotic. Inevitably, the series for the renormalized
quantities still have to be truncated at a point where it is still analytically tractable.

A particular truncation scheme which has been used in the context of hydrody-
namic turbulence, as well as MHD, is known as the direct interaction approximation
(DIA). This pioneering work was due to Kraichnan [18]. The approximation amounts
to going to the second order in the number of verticies, with the propagator being
renormalized to second order as well. The three-point vertex is not renormalized in
this scheme which, in effect, is the direct interaction approximation. In the context
of a perturbation expansion, this is an ad hoc truncation scheme.

An important consequence of the DIA is that it predicts an energy spectrum which
follows a −3/2 power law. This is attributed to the non-local effects of sweeping,
which are excluded from Kolmogorov’s considerations. Today, it has been estab-
lished experimentally that the inertial energy spectrum follows more closely the
Kolmogorov −5/3 power law. Despite that, the DIA is still of considerable interest.
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The major strength of the DIA lies in the fact that it is a physically realizable the-
ory. In contrast, other approximation schemes lead to the unphysical prediction of a
negative energy spectrum for the theory.

Renormalized perturbation theories are in a good agreement with simulations at
low Reynolds number [8]. However, the application of these methods to inhomoge-
neous flows has posed great difficulty.

4.4 Application of Renormalization Group to Hydrodynamic
and Magnetohydrodynamic Turbulence

Following success of RG method in the theory of critical phenomena, applications
extended to the study of evolution equations with appropriate extensions of RG
group methods, which is known as the dynamic RG. Traditional RG applications
were intended to compute scaling laws. However, as follows from Kolmogorov’s
phenomenological theory, in turbulence, scaling exponents can be computed based
on simple dimensional and statistical arguments (in the inertial range). Thus, to
this end the RG method, as applied to turbulence, should offer something more in
order to justify itself. For example, Kolmogorov’s energy spectrum is primarily a
proportionality relation, so if the RG method is to make some non-trivial predictions
it must predict such coefficients.

The mathematical complexity of treating the full NS equation with realistic bound-
ary conditions has proved to be extremely hard. A lot of present research is centered
around a somewhat simpler problem, namely, statistically homogeneous and isotropic
turbulence. All of the discussion which follows will be in the context of this sim-
pler problem. We will focus on unbounded fluids. Thus, to sustain turbulent flows,
random stirring forces are introduced, which play the role of an energy input and
provide a statistically stationary state. The statistics of the stirring forces is often
chosen to follow a Gaussian distribution, such that the second moment is white-
in-time and follows a power-law spectrum. The power-law form of the spectrum is
needed to establish the self-similarity property of the stirring forces which are used
in RG methods, with further specification subject to individual studies. With these
specifications the NS equation takes a form of a Langevin equation.

Langevin equations have proved to be very useful in many physics applications.
The most elementary use of these equations goes back to Einstein [22] in 1905 and
his quantitative theory of Brownian motion. Application of RG methods to Langevin
equations was initiated by Ma and Mazenko [23] in 1975. They employed essentially
a Wilson-Kadanoff-style RG.

4.4.1 Hydrodynamics

In 1977, following Ma and Mazenko [23], Forster and others [24] applied RG methods
to the randomly stirred NS equation. All of the above considerations used to simplify
the problem apply to their work, and all other problems discussed here, unless stated



4.4 Application of Renormalization Group to Hydrodynamic 57

otherwise. They considered a number of different spectra which specify the stirring
forces. To model the fluid near equilibrium, often referred to as Model A, the forcing
spectrum has the form:

DA (k) =
⎤

D0k2 for |k| < α,

0 otherwise,
(4.4.1)

where α is the short scale cut-off. This forcing can be associated with molecular
randomness in the flow. In addition they considered another spectrum, known as
Model B:

DB (k) =
⎤

D0 for |k| < α,

0 otherwise.
(4.4.2)

Note, that when k ∞ 0 the spectrum is non-vanishing, DB (k) � 0. The stirring
persists to the size comparable to the system size. A physical interpretation of this
forcing spectra is to think of shaking the fluid as a whole. In a more realistic bounded
flow, say fluid in a vessel, this would correspond to shaking the vessel. A third model,
referred to as Model C, corresponds to a spectrum:

DC (k) =
⎤

D0 for ᾱ < |k| < α,

0 otherwise.
(4.4.3)

This forcing implies that energy is injected only in a certain spatial range, which
corresponds to

⎢
ᾱ,α

⎣
in Fourier space. The objective of this paper is to study the

long-time properties of the correlation function subject to different forcing.
For model A, it has been found that a non-trivial fixed point exists in d > 2.

Analysis near the fixed point shows that long-time properties of the viscosity are in
agreement with previous literature. In d = 2, there is a logarithmic correction to
conventional hydrodynamics. The energy spectrum function is found to be E (k) ∝
kd−1. In d < 2, the hydrodynamic description breaks down, though it is unclear
what this model could be below d = 2 in the first place. A similar analysis is carried
out for model B. It is found that a hydrodynamic description breaks down for d < 4.
Logarithmic corrections follow at d = 4, and the long-time properties of viscosity
can be computed for d > 4. The energy spectrum is not the same as in Model A
and is very different depending on dimensionality of the problem. This is associated
with the shaking aspect of the fluid. An important result of this paper is that Model
A and C in fact display the same asymptotic behavior. Note, model C can be thought
of as a type of Model B, where the consecutive elimination of degrees of freedom is
partial. In this case the forcing spectrum is dominated by k2 behavior in the limit of
small k and, therefore, closely resembles model A and is attributed to universality in
the sense we have discussed in the previous chapter.

In 1979, de Dominicis and Martin, published their paper [25] on asymptotic
properties of the long-wavelength fluctuations using field-renormalization-group
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techniques. This calculation closely resembles methods applied in QFT. They have
used the following form of the energy spectrum:

D (k) ∝ D0
k4−d

⎢
m2

0 + k2
⎣−y/2 . (4.4.4)

The quantity m0 plays a role of the infrared cut-off of the stirring forces. The forcing
domain is m0 ∈ k ∈ α. The cut-off, α, is introduced at the intermediate stages
of the calculation but eventually is send to infinity. The results of [24] are recovered
in this framework. In addition, Kolmogorov’s energy spectrum is recovered by an
appropriate choice of y, namely y ∞ 4−, and d > 2. Although this has been very
reassuring, the central question of why this particular form of energy spectrum should
be observed in experiments has not been addressed, as was stressed by the authors
themselves. So far there has been no attempt to predict the proportionality coefficients
for the scaling laws. In fact, by this time it was argued by Kraichnan [21], that RG
methods are not superior to any other closure schemes. As we have pointed out, the
ability to predict the energy spectrum rests solely on dimensional grounds. Perhaps,
one could argue that at this stage RG provided at least a conceptual framework to
understand universality, as was demonstrated in [24].

To counter Kraichnan’s point, in 1983 Fournier and Frisch [26] carried out a
calculation, this time Wilson-Kadanoff style, to relate Kolmogorov’s constant to the
energy input rate of the random force. The coefficient is shown to have a universal
property, the context being that they are independent of viscosity and small-scale
forcing. Following this, in 1986 Yakhot and Orszag [27] exploited RG applications
even further. There are two sides to their work: on one hand, they have used RG
methods to compute proportionality constants (explicit numerical values), which are
in a reasonable agreement with some experiments; on the other hand, as it appears
from numerous articles [28–31] which review their work, that there are many flaws
with regards to their use of the RG. An important ingredient of their analysis is
the ε-expansion. This is a small parameter which is introduced through the noise
spectrum exponent. By choosing ε ∞ 0, the effect of additional interactions which
are produced by the RG can be studied. They have shown that it is possible to neglect
some non-linear effects which are generated by the RG in this limit. However, to
consistently reproduce Kolmogorov’s spectrum it is required that ε = 4. Thus, a
simple self-consisted analysis seems to be feasible around ε ∞ 0, but the physics
dictates that the appropriate regime is around ε = 4. Extrapolation from ε ∞ 0 to
ε = 4 is not obvious. Further, Eyink [28] argued that even in the limit ε ∞ 0, those
terms which were termed to be irrelevant, are in fact marginal by power counting.

As review articles suggest [20], all of the above issues are still open. Our pur-
pose is to investigate these matters for ourselves in the slightly more generalized
framework of MHD turbulence. To this end, RG applications to MHD are even more
controversial.



4.4 Application of Renormalization Group to Hydrodynamic 59

4.4.2 Magnetohydrodynamics

We begin our discussion of the renormalization group analysis of magnetohydro-
dynamics with a 1981 paper by Fournier et al. [32]. The authors used a dynamic
renormalization group technique [23] and worked with the original field variables,
{v, B}. Note that this is a new feature of MHD equations, since one can choose
to work with Elsasser variables [33] instead. The stochastic driving of the kinetic
and magnetic equations are assumed to be independent, zero-mean and Gaussian
random functions, with different exponents. Accordingly, they identified regimes
under which the RG procedure generates k2 corrections to the noise covariance. The
relevance/irrelevance of these corrections is discussed. Another important result of
their work is the fact that the vertex associated with the Lorentz force in the ki-
netic equation is renormalized, while other vertices are not. In dimensions d > 2
they identified two non-trivial regimes. Vertex renormalization plays an important
part in their analysis and leads to predictions which differ from other analytical tech-
niques used in the study of MHD turbulence (the direct interaction approximation, for
example). Further, the vertex renormalization is an additional complexity which is
not present in NS turbulence. The NS equations are invariant under Galilean transfor-
mations, which prevents renormalization of the vertex. However, as has been shown
by McComb and Berrera [34, 35] a more careful analysis of these ideas is required. In
[35] vertex invariance under RG transformations was shown using Ward-Takahashi
identities. This demonstrates an advantage of working in a functional integral repre-
sentation of a stochastic partial differential equation.

A paper by Camargo and Tasso [36] used a slightly different approach by working
with Elsasser variables. By the virtue of their approach, they weighted the Lorentz
force and the inertial term in the same way. Consequently, they derive the renor-
malization flow equations for the couplings, kinematic viscosity and resistivity. An
investigation of the flow equations in two and three dimensions is given with a focus
on asymptotic properties of the couplings and the Prandtl number. Our main criti-
cism of this work stems from the fact that no discussion is given about the vertex and
noise renormalization. In this sense their work is reminiscent of the DIA approach
of truncating the series expansion. Further, we would expect that regardless of how
the non-linearities are weighted, the differential RG equations should reduce to the
NS differential RG equation, which we could not establish. Also, as has been es-
tablished for the NS case [28], the RG procedure generates new terms and the only
systematic way of establishing their effect is by using scaling relations near a fixed
point. The problem of marginal variables is clearly established for the NS case and it
seems natural that an adequate discussion of such terms, for the MHD case, should
be present. After all the NS equation is a subclass of the MHD equations.

More recent papers on the subject include [37]. The formal set-up of the problem is
identical to [36], however the RG treatment is performed using the functional integral
formalism. The RG calculation is carried out by successive integration over the small
scales i.e a Wilsonian style calculation. Arguably, this is a more natural framework for
the RG methods, since other field theoretic tools such as Ward-Takahashi identities,
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Slavnov–Taylor identities, etc. can be conveniently derived [38]. In this work the RG
equations derived are different to those in [36]. This already raises some questions
about the validity of the analysis performed in the three papers discussed above.
The resultant equations do reduce to the known results in NS studies. Further, the
exponent, which is used to define noise correlation function, is adjusted to fit either
the Kolmogorov or the Kraichnan energy spectrum in the vicinity of a non-trivial
fixed point. However, the purpose of doing so is not clear. The RG procedure is a
local transformation of equations and cannot account for any non-local effects such
as sweeping. A discussion about vertex renormalization is given, where it is found
that it is not renormalized. To one-loop order, a regime is chosen where the noise
covariance is not renormalized and there is no discussion about the characterization
of new terms which are generated at one-loop order.

In [39] a classical field-theoretic treatment of MHD turbulence has been given
through the identification of the primitively divergent vertex functions. The study
was restricted to two dimensions and the existence of a non-trivial fixed point was
established. Further shortcomings in RG applications to MHD turbulence were re-
ported by [40]. They have managed to reproduce the RG coefficient functions to
one-loop order, which can be conveniently reduced to those equations obtained via
the Wilsonian RG [32]. A kinetic fixed point, which is associated with the Kol-
mogorov scaling regime, was identified for d ≥ 2.

We believe that, in view of the foregoing remarks, a consistent treatment of MHD
turbulence is lacking in the framework of Wilsonian RG. This serves as a starting
point for our own work.

4.5 Functional Integral

4.5.1 Elsasser Transformation

4.5.1.1 Dynamic Equations

The equations which describe MHD have been derived in the previous section. By
using standard vector identities the defining equation can be written in a different
form that is more convenient for subsequent analysis. They form a set of coupled
stochastic partial differential equations:

∂v
∂t

+ (v · →) v = −1

ρ
→ P + 1

ηρ

(
(B · →) B − 1

2
→ |B|2

)
+ ν→2v + ξ, (4.5.1)

∂B
∂t

= (B · →) v − (v · →) B + μ→2B + δ. (4.5.2)
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It is convenient to re-write them in a more symmetric form using Elsasser variables
[33]. This is a two-step transformation. First, we rescale the magnetic, pressure and
the magnetic noise fields:

b = B√
ρη

, p = P√
ρ
, ψ = δ√

ρη
. (4.5.3)

This transformation sets the magnetic and the velocity fields on the same footing in
terms of their dimensionality:

∂v
∂t

+ (v · →) v = −→ p + (b · →) b − 1

2
→ |b|2 + ν→2v + ξ, (4.5.4)

∂b
∂t

= (b · →) v − (v · →) b + μ→2b + ψ. (4.5.5)

The second step is to introduce the transformation:

P = v + b, Q = v − b, (4.5.6)

which leads to the equations:

∂P
∂t

+ (Q · →) P = −→
(

p + 1

2
|b|2

)
+ γ+→2P + γ−→2Q + ξ + ψ, (4.5.7)

∂Q
∂t

+ (P · →) Q = −→
(

p + 1

2
|b|2

)
+ γ−→2P + γ+→2Q + ξ − ψ, (4.5.8)

where we have defined:

γ± = 1

2
(ν ± μ) . (4.5.9)

We want to eliminate the pressure term so the equation is expressed solely in terms
of P and Q fields. It is useful to define a scalar function:

g = p + 1

2
|b|2 . (4.5.10)

If we take divergence of the MHD equations in Elsasser variables, all the linear
terms in the field vanish, because of the incompressibility condition and Maxwell’s
equation. This leaves us with a relationship:

→ · ((Q · →) P) = −→2g, (4.5.11)

→ · ((P · →) Q) = −→2g. (4.5.12)
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In the index notation, the left-hand side of the equations are:

∂i (Qk∂k Pi ) = ∂i∂k (Qk Pi ) , (4.5.13)

and
∂i (Pk∂k Qi ) = ∂i∂k (Qi Pk) . (4.5.14)

Hence, we can express the scalar function g formally as:

g = −→−2 (∂i Pk) (∂k Qi ) , (4.5.15)

where →−2 is an inverse of the Laplacian operator. Thus the MHD equations can be
written as:

∂Pi

∂t
+
{
∂ jδki − →−2∂i∂ j∂k

}
Pk Q j = γ+→2 Pi + γ−→2 Qi + ξi + ψi , (4.5.16)

∂Qi

∂t
+
{
∂kδi j − →−2∂i∂ j∂k

}
Pk Q j = γ−→2 Pi + γ+→2 Qi + ξi − ψi . (4.5.17)

These equations are remarkably similar to the equations of hydrodynamics. The
apparent symmetry of the fields allows for a simpler application of the diagrammatic
technique.

4.5.1.2 Noise Statistics

The statistics of the noise fields is specified using moments of the functional probabil-
ity distribution. Since we are dealing solely with Gaussian fluctuations it is sufficient
to specify the first and the second moments of the distribution. Thus, we have:

〈
ξi (k,ω) ξ j (q,φ)

⎡ = D (k) δi jδ (k + q) δ (ω + φ) . (4.5.18)

In general, the noise covariance D, can depend on powers of the gradient operator.
We assume that the mean of the fluctuations is zero. However, the space of all possible
functions which represent the noise has to be further reduced due to the condition of
incompressibility:

→ · ξ = 0. (4.5.19)

This can be conveniently achieved through functional integral representation of the
probability functional:

P [ξ] ∞ PR [ξ] = P [ξ] δ [→ · ξ] . (4.5.20)

In other words we want to calculate:
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〈
ξi (x, t) ξ j (y, τ )

⎡ =
⎥

D [ξ] ξi (x, t) ξ j (y, τ )P [ξ] δ [→ · ξ] , (4.5.21)

The functional probability distribution is:

P [ξ] ∝ exp

(
−1

2

⎥
dx dy ξ (x) ξ−1 (x, y) ξ (y)

)
, x ≡ (x, t) , (4.5.22)

where ξ is the noise covariance matrix. In the formalism of functional integrals we
do not keep track of field-independent normalization constants since we are primarily
interested in average quantities such as:

⇒·〉 =
∫
D [ξ] (·)P [ξ]∫
D [ξ]P [ξ]

, (4.5.23)

where such normalization constants cancel. Even when they are infinite, as they often
are in condensed-matter-theory problems, we can still ignore them. A more detailed
analysis will be given in a later section.

For now we seek to compute the second moment for the reduced probability
distribution defined above. At this stage it is useful to introduce a representation of
the Dirac δ-functional:

δ [→ · ξ] =
⎥

D [φ] exp

(
i
⎥

dx φ (x) → · ξ (x)

)
. (4.5.24)

Further, we make our first use of the notion of the generating functional for correlation
functions. Consider a functional:

Z [J] = N −1
⎥

D [ξ]PR [ξ] exp

(⎥
dz J (z) · ¸ (z)

)
, (4.5.25)

where N is the normalization factor. By differentiation the above expression with
respect to the source fields J we obtain moments of the distribution:

〈
ξi1 (x1) . . . ξin (xn)

⎡ = δn
〈
exp

⎢∫
dz J (z) · ξ (z)

⎣⎡
R

δJi1 (x1) . . . δJin (xn)

⎦⎦⎦⎦⎦
J=0

. (4.5.26)

The source fields are set to zero once all the necessary differentiation has been done.
Collecting all of the above results together we can specify the second moment in

a form amendable to a direct computation:

〈
ξi (x1, t1) ξ j (x2, t2)

⎡ = δ2

δJi (x1) δJ j (x2)

⎥
D [ξ]D [φ]P [ξ]

× exp

(⎥
dx [J (x) + iφ (x) →] · ξ (x)

)
. (4.5.27)
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The above are simply Gaussian functional integrals which we can compute. After
some algebra we arrive at:

〈
ξi (x1, t1) ξ j (x2, t2)

⎡ = (
δi j − →−2∂i∂ j

)
Dδ (x1 − x2) δ (t1 − t2) . (4.5.28)

Under Elsasser transformations we can define new noise fields with modified ampli-
tudes. Further, as a consequence of the transformation, the newly defined fields have
a cross correlation. These new fields are:

f = ξ + ψ, g = ξ − ψ. (4.5.29)

Their statistics are:

〈
fi (x1, t1) f j (x2, t2)

⎡ = 2 (A + B) Pi j D (→) δ (x1 − x2) δ (t1 − t2) , (4.5.30)

〈
gi (x1, t1) gj (x2, t2)

⎡ = 2 (A + B) Pi j D (→) δ (x1 − x2) δ (t1 − t2) , (4.5.31)

〈
fi (x1, t1) gj (x2, t2)

⎡ = 2 (A − B) Pi j D (→) δ (x1 − x2) δ (t1 − t2) , (4.5.32)

where we have defined the projector operator as

Pi j =
(
δi j − →−2∂i∂ j

)
. (4.5.33)

This insures that noise fields are now compatible with the incompressibility condition
and Maxwell’s equations. We can also define another operator which enters the
dynamic equation:

Ri jk = ∂ j Pik . (4.5.34)

4.5.2 Functional Integral Formulation

We seek to re-write the MHD equations in terms of functional integrals. A detailed
review on the properties of functional integrals can be found in [41]. Our analysis
closely follows the technique described in [43], yet a more detailed analysis can be
found in [42].

Let us introduce a compact notation for the equations of motion, namely, we write
them symbolically as:

F (1)
i [P, Q] = fi , i = 1, . . . , d, (4.5.35)

F (2)
i [Q, P] = gi , i = 1, . . . , d. (4.5.36)
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We make the assumption that the problem is well-defined, namely, that there exists a
unique solution in terms of P and Q which satisfies the above equations. We denote
the solution as (Ps, Qs). Now we make use of the following identity:

1 =
⎥

D [P]D [Q] δ [P − Ps] δ [Q − Qs] . (4.5.37)

It is convenient to substitute the argument of the Dirac δ-functional by the correspond-
ing equation of motion. Such a transformation introduces a Jacobian determinant:

1 =
⎥

D [P]D [Q]
d∏

i=1

δ
[

F (1)
i [P, Q] − fi

]
δ
[

F (2)
i [Q, P] − gi

]
J . (4.5.38)

The specific form of the Jacobian determinant will be the subject of the next section.
It will be shown that it can be dropped because it is field independent, so we drop
it for the rest of our discussion. Let us now consider an arbitrary functional of the
fields P and Q. We wish to compute some average properties of such a functional.
Evidently, we have to take averages over different realizations of the noise:

⇒F〉 =
⎥

D [f]D
[
g
]

F [P, Q]P
[
f, g

]
, (4.5.39)

where P is the functional probability distribution of the noise fields in Elsasser
variables. We can now insert the identity Eq. (4.5.37) into the above equation:

⇒F〉 =
⎥

D [f]D
[
g
]
D [P]D [Q] F [P, Q]P

[
f, g

]
d∏

i=1

δ
[

F (1)
i [P, Q] − fi

]
δ
[

F (2)
i [Q, P] − gi

]
. (4.5.40)

At this point we can choose two different approaches. Both are equivalent and is a
matter of personal preference. We can integrate out the noise fields, then the dynamics
will be captured in P . Such an approach would give a functional integral solely in
terms of physical fields. For this reason it is sometimes referred to as the “minimalist”
approach [43]. Alternatively we could introduce two auxiliary vector fields through
the functional integral representation of the Dirac δ-functional. This is the method we
choose to follow, partially because this formalism offers a slightly more convenient
starting point for the RG calculation.

We have already come across functional representation of the Dirac δ-functional
in the previous section, so we can write:
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⇒F〉 =
⎥

D [f]D
[
g
]
D [P]D [Q] F [P, Q]P

[
f, g

]

×
⎥

D [h] exp

(
i
⎥

dx
(

F (1)
i [P, Q] − fi (x)

)
hi (x)

)

×
⎥

D [n] exp

(
i
⎥

dx
(

F (2)
i [Q, P] − gi (x)

)
ni (x)

)
. (4.5.41)

Here we assume summation over repeated indicies. The summation over the indicies
comes from the product of δ—functionals. The auxiliary fields are now coupled to
the noise fields. The advantage of the above formulation is that the statistics of the
noise is coupled to these new auxiliary fields rather than the equation of motion, like
in the minimalist approach.

The functional probability distribution is specified as follows:

P
[
f, g

] = exp

[
−1

2

⎥
dxdy

(
f (x) · ξ−1+ (x, y) · f (y) + g (x) · ξ−1+ (x, y) · g (y)

)]

× exp

[
−
⎥

dxdyg (x) · ξ−1− (x, y) · f (y)

]
. (4.5.42)

We only need to integrate over the real noise fields. The above is just a Gaussian
integral so we obtain:

⇒F〉 =
⎥

D [P]D [Q]D [h]D [n] F [P, Q] exp

[
−
⎥

dxdyn (x) · ξ− (x, y) · h (y)

]

× exp

[
−1

2

⎥
dxdy (h (x) · ξ+ (x, y) · h (y) + n (x) · ξ+ (x, y) · n (y))

]

× exp

[
i
⎥

dx F (1)
i [P, Q] hi (x) + i

⎥
dx F (2)

i [Q, P] ni (x)

]
. (4.5.43)

Finally, we can make a special choice of F such that it behaves as a generating
functional. We have encountered the idea of the generating functional in the previous
section, so here we simply state the form of F that we seek:

F
[
jP , jQ, gh, gn

]
= exp

[⎥
jP · P +

⎥
jQ · Q +

⎥
gh · h +

⎥
gn · n

]
.

(4.5.44)

We have suppressed the argument of the functions for compactness, but it is un-
derstood that the integrals run over the space-time arguments. This completes the
specification of the functional integral for the MHD equations. By taking functional
derivatives with respect to the source fields of F we obtain correlation functions of
the theory.
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4.5.3 Jacobian of the Transformation

4.5.3.1 Ordinary Calculus

To understand why we require a Jacobian upon a change of variables in the argument
of the Dirac δ-functional we consider a simple example from ordinary calculus.

The Dirac δ-function can be defined in terms of a Gaussian function in the limit
of the standard deviation approaching zero:

δ (x) = lim
a∞0

δa (x) , (4.5.45)

where

δa (x) = 1

a
√

π
exp

(
− x2

a2

)
. (4.5.46)

Using this representation we can try to compute the integral:

I1 =
≤⎥

−≤
dxδ ( f (x)) , f (x)|x=x0

= 0. (4.5.47)

We assume that the solution to f (x) = 0 is unique. We can generalize to the case
of multiple solutions in a simple manner. For now we stick to a single solution case.
A standard way of solving the integral is to change variables x ∞ f and integrate
over f . We would like to present an argument which is perhaps more in the spirit of
field theory. Let us re-write the integral I using the Gaussian representation. We will
eventually recover the limiting case by taking a ∞ 0:

I1,a = 1

a
√

π

≤⎥

−≤
dx exp

⎨
− f (x)2

a2

)
. (4.5.48)

We assume that f is a well behaved analytic function and therefore it can be Taylor-
expanded around x0:

f (x)2 =
[
(x − x0) f ∗ (x0) + 1

2! (x − x0)
2 f ∗∗ (x0) + · · ·

]2

. (4.5.49)

The first term in the Taylor expansion is zero by definition. Let us make a change of
variables:

y = x − x0, (4.5.50)
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then

I1,a = 1

a
√

π

≤⎥

−≤
dy exp

⎨
− 1

a2

[
y f ∗ (x0) + 1

2! y2 f ∗∗ (x0) + · · ·
]2
)

. (4.5.51)

The expansion can be grouped into a quadratic part and the rest:

I1,a =
⎥

dx
1

a
√

π
exp

(
− 1

a2 y2 f ∗ (x0)
2
)

exp

(
− 1

a2 V (y)

)
. (4.5.52)

Importantly, V (y) is of order y3 and higher. Perform another transformation of
variables:

t = y

a
, (4.5.53)

I1,a =
≤⎥

−≤
dt

1√
π

exp
(
−t2 f ∗ (x0)

2
)

exp
⎢−V ∗ (t)

⎣
. (4.5.54)

All the dependence on the parameter a has shifted into V ∗ (t). However, as we have
noted, terms in V (y) are of order y3 and higher. Hence, after the transformation
t = y/a, the contribution V ∗ (t) is a polynomial in positive powers of a. When we
take the limit a ∞ 0, all terms in V ∗ (t) go to zero. In field theory a similar technique
exists. When one tries to perform a loop expansion, say in φ4 theory, instead of a
one has Planck’s constant � [45]. It does not make sense to take the limit � ∞ 0,
instead it is used as a small parameter for a systematic expansion.

After taking the limit of a ∞ 0 we are left with a Gaussian integral:

I1 = lim
a∞0

I1,a =
⎥

dt
1√
π

exp
(
−t2 f ∗ (x0)

2
)

. (4.5.55)

This is a straightforward integral to evaluate, so we read our final result:

≤⎥

−≤
dxδ ( f (x)) = 1

f ∗ (x0)
. (4.5.56)

The role of the Jacobian is thus to normalize the Dirac δ-function upon a change of
variables: ≤⎥

−≤
dxδ (x − x0) =

≤⎥

−≤
dxδ ( f (x)) f ∗ (x) . (4.5.57)
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The above considerations can be further generalized to multiple integrals. Let us
consider the same problem but in 2D. The argument of the Dirac δ-function is now
a two-component vector function:

f (x) = ( f1 (x, y) , f2 (x, y)) . (4.5.58)

We want to solve the integral:

I2 =
≤⎥

−≤
dxdyδ (f (x)) , f (x)|(x,y)=(x0,y0) = 0. (4.5.59)

We assume that there is a unique solution to f (x) = 0 and it is an analytic function
in both variables. By the vector argument of the Dirac δ-function it is understood
that:

δ (f (x)) = δ ( f1 (x, y)) δ ( f2 (x, y)) . (4.5.60)

Once again we make use of the Gaussian representation of the Dirac δ-function:

I2,a = 1

a2π

≤⎥

−≤
dxdy exp

(
− 1

a2

(
f1 (x, y)2 + f2 (x, y)2

))
. (4.5.61)

Let us expand both components of f around the point (x0, y0):

f1 (x, y) = ∂y f1(y − y0) + ∂x f1(x − x0) + · · · , (4.5.62)

f2 (x, y) = ∂y f2(y − y0) + ∂x f2(x − x0) + · · · . (4.5.63)

The integral can be grouped into two contributions: one which is quadratic in variables
x and y and the rest. Upon a shift of variables:

t = x − x0, z = y − y0, (4.5.64)

we can write:

I2,a = 1

a2π

≤⎥

−≤
dtdz exp

(
− 1

a2

([
∂y f1

]2
z2 + [∂x f1]2 t2 + 2

[
∂y f1∂x f1

]
t z
))

× exp

(
− 1

a2

([
∂y f2

]2
z2 + [∂x f2]2 t2 + 2

[
∂y f2∂x f2

]
t z
)

− 1

a2 V (t, z)

)
.

(4.5.65)
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where the contribution V (z, t) contains all the higher order terms. After rescaling
the variables z and t by a and taking the limit a ∞ 0, only the quadratic part of the
integral is non-vanishing. We are left with a 2D Gaussian integral:

I2 = 1

π

≤⎥

−≤
dtdz exp

(
−
([

∂y f1
]2

z2 + [∂x f1]2 t2 + 2
[
∂y f1∂x f1

]
t z
))

× exp
(
−
([

∂y f2
]2

z2 + [∂x f2]2 t2 + 2
[
∂y f2∂x f2

]
t z
))

. (4.5.66)

Further, the above expression can be more conveniently written in terms of matrices:

Mi =
⎨ [

∂x fi
]2 [

∂y fi
] [

∂x fi
]

[
∂y fi

] [
∂x fi

] [
∂y fi

]2

)
, i ∈ {1, 2} . (4.5.67)

We define the following matrix:

M = M1 + M2, (4.5.68)

and we arrive at the expression:

∞ I2 = 1

π

≤⎥

−≤
dx exp

(
−xT · M · x

)
. (4.5.69)

The matrix M is symmetric, so the last integral can be calculated by diagonalization.
The result of the final integration reads:

I2 = (det M)−1/2 . (4.5.70)

With a little bit of algebra it can be shown that:

(det M)−1/2 = 1[
∂x f1

] [
∂y f2

] − [
∂x f2

] [
∂y f1

] . (4.5.71)

The denominator is in fact the familiar Jacobian determinant. Thus, the value of the
integral K is:

≤⎥

−≤
dxdyδ (f (x)) = 1

J
, J = det

(
∂x f1 ∂y f1
∂x f2 ∂y f2

)
(x0,y0)

. (4.5.72)

From the above example the generalization to arbitrary dimension follows, however
the algebraic manipulations become more involved. We can state the general result:
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⎥
ddxδ (f (x)) =

⎥
ddxJ −1δ (x − x0) . (4.5.73)

A more general case of multiple solutions to the equation f (x)|x=xi
= 0, requires

making a Taylor expansion around every xi . The result is then a sum of Jacobian
determinants evaluated at every xi .

4.5.3.2 Functional Jacobian

Often, it is convenient to think of functional integrals as ordinary integrals which are
generalized to an infinite number of variables. In particular this is often the way one
interprets Gaussian functional integrals.

K =
≤⎥

−≤

N∏
i=1

dφi exp

⎛
⎝−

∑
j,k

φi A jkφk

⎞
⎠

∞
⎥

D [φ] exp

(
−
⎥

dxdyφ (x) A (x, y) φ (y)

)
. (4.5.74)

The normalization factor is often dropped. In the continuum limit it generates an
infinite contribution. However, one is primarily concerned with average quantities
so these infinities do not contribute.

In this respect the method of the Dirac δ-function representation through Gaussian
integrals serves as a convenient tool for constructing functional Jacobian determi-
nants. In particular, using the above analogy we can write:

⎥
D [φ] δ [F [φ]] =

⎥
D [φ] δ [φ − φs]J −1, (4.5.75)

where the functional Jacobian determinant is

J = det

(
δF [φ (x)]

δφ (y)

)
. (4.5.76)

The meaning of the above expression is best understood if we go back to the dis-
cretized case, then the Jacobian matrix is specified by the following matrix elements:

Ji j = ∂Fi

∂φ j
↔ J (x, y) = δF [φ (x)]

δφ (y)
. (4.5.77)

Upon discretization the continuous variable φ (x) is substituted by φi , where i denotes
the lattice site of which suppose there are N . The constraint F [φ] = 0 turns into
N equations for each φi . Thus, the result turns into an integral with N variables,
which can be calculated using the usual rules of calculus. A rigorous discussion on
the points made above can be found in [42].
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4.5.3.3 MHD Jacobian Determinant

With regards to the MHD equation in Elsasser variables, the Jacobian determinant
is a generalization of the above ideas to functional integrals with two vector field
variables, which is a determinant of a 2 × 2 block array:

J = det

(⎢
∂t − γ+→2

⎣
δ jk + P jk Ql∂l −γ−→2δ jk + P jn∂k Pn

−γ−→2δ jk + P jn∂k Qn
⎢
∂t − γ+→2

⎣ + P jk Pl∂l

)
δ
⎢
x − x ∗⎣ .

(4.5.78)

Formally, we can manipulate the Jacobian matrix by means of the identities:

det A = exp (Tr ln A) and det (AB) = det (A) det (B) . (4.5.79)

Let us define the Jacobian matrix as follows:

J = ∂t 1 + M, M ≡
⎨

δF1, j
δPk

δF1, j
δQk

δF2, j
δPk

δF2, j
δQk

)
, (4.5.80)

then:

J = det (J )

= det (∂t 1 + M)

= det (∂t ) exp

⎨ ≤∑
n=1

1

n
Tr

(
∂−1

t M
)n
)

. (4.5.81)

At this stage it is important to specify what we mean by ∂−1
t . It is the inverse of the

operator ∂t and hence it can be viewed as a Green’s function such that:

∂t G
⎢
t, t ∗

⎣ = δ
⎢
t − t ∗

⎣
, (4.5.82)

with the Green’s function being:

G
⎢
t, t ∗

⎣ = �
⎢
t − t ∗

⎣
. (4.5.83)

To proceed we also need to clarify what we mean by trace, Tr, when dealing with
functionals. In the context of the MHD it is:

Tr ≡
∑

i j

δi j

⎥
dxdydtdt ∗δ (x − y) δ

⎢
t − t ∗

⎣
. (4.5.84)

The sum runs over the diagonal element of the matrix M in the usual sense. Each
diagonal element of M is a continuous representation of a discrete matrix in the sense
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of the Eq. (4.5.77). Thus, summing each diagonal element of these matricies in the
continuum limit is represented by integration.

We can try to evaluate the trace part in the exponential term by term:

Tr
⎢
G
⎢
t, t ∗

⎣
M
⎣ =

∑
i j

δi j

⎥
dxdydtdt ∗δ (x − y) δ

⎢
t − t ∗

⎣
�
⎢
t − t ∗

⎣
Mi j (x, y)

= �(0)
∑

i

⎥
dtdxdyδ (x − y) Mi i (x, t, y, t)

= �(0)
∑

i

⎥
dtTrspaceMi i (x, t, y, t) . (4.5.85)

The quantity �(0) is ill-defined. It is in fact specified by the particular description
we choose when we put a continuous equation of motion on a lattice with finite time
steps. This issue is discussed in more detail in [42, 46]. To put the above statement
into context let us define the Heaviside step function as follows:

�(x) =
x⎥

−≤

d�(y)

dy
dy. (4.5.86)

We now make use of the general definition of a derivative:

�(x) =
x⎥

−≤
lim

δy∞0

�
⎢
y + α+1

2 δy
⎣ − �

⎢
y + α−1

2 δy
⎣

δy
dy. (4.5.87)

Assume that δy ∞ 0+, then:

�(0) = α + 1

2
. (4.5.88)

It is clear from the above that the definition of the step function at zero depends on
the discretization method.

The Heaviside step function appears in the equations only with the time arguments.
Thus it is the way we discretized the time variable only, which dictates the choice of
�(0). A convenient choice can be α = −1, then the Jacobian determinant is simply
an irrelevant constant which can be dropped. However, such an asymmetric choice
of discretization breaks coordinate invariance in field space [43]. For this reason one
usually sticks with a symmetric scheme, which leads to:

�(0) = 1

2
. (4.5.89)
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It follows that the first term in the exponential, Eq. (4.5.81) can be written as:

Tr
(
∂−1

t M
)

= 1

2

∑
i

⎥
dtTrspaceMi i (x, t, y, t) . (4.5.90)

Conveniently, all other terms in Eq. (4.5.81) vanish. To see this we consider the
second term in the exponential:

Tr
⎢
G
⎢
t, t ∗

⎣
M
⎣2 =

⎥
dtdt ∗∗G

⎢
t, t ∗∗

⎣
G
⎢
t ∗∗, t

⎣ ⎥
dxdz f

⎢
x, t, z, t ∗∗

⎣

=
⎥

dtdt ∗∗�
⎢
t − t ∗∗

⎣
�
⎢
t ∗∗ − t

⎣ ⎥
dxdz f

⎢
x, t, z, t ∗∗

⎣
= 0. (4.5.91)

The function f contains all of the information about the matrix M2, but its exact form
does not matter in the above argument. The product of Heaviside step functions kills
the above contribution. Analogously one sees that higher order terms would exhibit
the same property [43] and therefore we retain only the first term in the expansion
in Eq. (4.5.81).

We can state the final form of the Jacobian determinant in the following form:

J = det (∂t ) exp

⎨
1

2

∑
i

⎥
dtTrspaceMi i (x, t, y, t)

)
. (4.5.92)

Note, the prefactor of the exponential is field independent. As we have argued with
the normalization of Gaussian functional integrals, the prefactor can be dropped from
the formulation of the problem, since we are only interested in average quantities
with respect to the functional probability distribution. For this reason the prefactor
in Eq. (4.5.92) can also be dropped.

Finally we make the following observation about the matrix M:

Mi j = Mi jδ (x − y) δ
⎢
t − t ∗

⎣
, (4.5.93)

which follows from a direct computation, Eq. (4.5.78). Then, we can write:

J = exp

⎨
1

2

∑
i

⎥
dtdxdyδ (x − y)Mi i (x, t, y, t) δ (x − y) δ

⎢
t − t ∗

⎣)

= exp

(
d
⎥

dtdxdyδ (x − y)
(
−γ+→2

)
δ (x − y) δ

⎢
t − t ∗

⎣)

× exp

(
1

2

⎥
dtdxdyδ (x − y) (Pik Ql∂l + Pik Pl∂l) δkiδ (x − y) δ

⎢
t − t ∗

⎣)
.

(4.5.94)
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The first part is field independent, so we can safely ignore it despite the presence of
an ill-defined object such as δ (0) [44, 47]. The second contribution requires a little
bit more work to be done with it. Sum over repeated indicies is assumed. Consider
the quantity:

H =
⎥

dtdxdyδ (x − y) Pik Ql (x, t) ∂lδkiδ (x − y) δ
⎢
t − t ∗

⎣
. (4.5.95)

The time-dependent delta-function can be integrated over. The projector operator
when summed over the diagonal elements is:

Pikδki = d − 1. (4.5.96)

Therefore we have:

H = (d − 1)

⎥
dy

(⎥
dxδ (x − y) Ql

⎢
x, t ∗

⎣
∂lδ (x − y)

)
. (4.5.97)

The integral over x can be performed by parts:

⎥
dx

[
δ (x − y) Ql

⎢
x, t ∗

⎣]
∂lδ (x − y) = −

⎥
dxδ (x − y) ∂l

[
δ (x − y) Ql

⎢
x, t ∗

⎣]
.

(4.5.98)
Note, because → · Q = 0, it follows:

⎥
dxδ (x − y) Ql

⎢
x, t ∗

⎣
∂lδ (x − y) = −

⎥
dxδ (x − y) Ql

⎢
x, t ∗

⎣
∂lδ (x − y) .

(4.5.99)

The surface term vanishes because of the condition on the fields we have imposed
earlier. We conclude that this contribution to the Jacobian is zero since the relationship
of the form A = −A implies A = 0. From the above we can see that the Jacobian
determinant is field independent, so we can ignore this diverging contribution in
the same manner as we have ignored infinite normalization in functional Gaussian
integrals. For the remaining discussion we simply drop the Jacobian determinant
from our formulation.

4.6 Free Theory

The functional integral formulation of the MHD equations can be understood solely
in terms of the Gaussian integrals. In fact, a Gaussian theory forms the starting point
for any perturbative analysis of the problem. To see how this comes about, let us split
the equations of motion into linear and non-linear components:
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F (1)
i [P, Q] = F (1)

i,L [P, Q] + F (1)
i,Int [P, Q] , (4.6.1)

F (2)
i [Q, P] = F (2)

i,L [Q, P] + F (1)
i,Int [Q, P] . (4.6.2)

We can split the generating functional accordingly:

Z =
⎥

D [P]D [Q]D [h]D [n] exp

[
−
⎥

dxdyn (x) · ξ− (x, y) · h (y)

]

× exp

[
− 1

2

⎥
dxdy (h (x) · ξ+ (x, y) · h (y) + n (x) · ξ+ (x, y) · n (y))

]

× exp

[
i
⎥

dx F (1)
i,L [P, Q] hi (x) + i

⎥
dx F (2)

i,L [Q, P] ni (x)

]

× exp

[⎥
dxjP (x) · P (x) +

⎥
dxjQ (x) · Q (x) +

⎥
dxgh (x) · h (x) +

⎥
dxgn (x) · n (x)

]

× exp

[
i
⎥

dx F (1)
i,Int [P, Q] hi (x) + i

⎥
dx F (1)

i,Int [Q, P] ni (x)

]
. (4.6.3)

Let us write the interaction term as a series expansion of the exponential. For book-
keeping purposes we introduce a parameter λ, which labels the non-linear terms:

Z = Z0

≤∑
n=0

inλn
(⎥

dx F (1)
i,Int [P, Q] hi (x) +

⎥
dx F (1)

i,Int [Q, P] ni (x)

)n

.

(4.6.4)
The prefactor Z0 stands for the part of the functional integral which is quadratic in
the field. The series expansion forms a polynomial in the fields. These in turn can be
expressed as derivatives with respect to the source fields. Thus we can write:

Z =
≤∑

n=0

inλn

⎨⎥
dx F (1)

i,Int

[
δ

δjP
,

δ

δjQ

]
δ

δgh
i (x)

+
⎥

dx F (1)
i,Int

[
δ

δjQ
,

δ

δjP

]
δ

δgn
i (x)

)
Z0

[
jP , jQ, gh, gn

]
. (4.6.5)

Thus, the generating functional of the linear theory forms the central object from
which we can calculate the correlation function of the complete theory to the desired
accuracy.

The generating functional of a free theory consists solely of Gaussian integrals, so
we can integrate out all the fields. At this point it is convenient to work in the Fourier
representation of the MHD equations. Furthermore, since our goal is to perform a
Wilsonian RG calculation we are obliged to work in Fourier space.

The equations of motion can be conveniently written as follows:

G−1
0 (k)

(
Pl (k)

Ql (k)

)
=
(

fl (k)

gl (k)

)
− λiRlik (k)

(∫
dq Qi (q) Pk (k − q)∫
dq Pi (q) Qk (k − q)

)
, (4.6.6)
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where we have defined:

G−1
0 (k) =

(
iω + γ+k2 γ−k2

γ−k2 iω + γ+k2

)
, (4.6.7)

Rlik (k) = ki

(
δlk − klkk

k2

)
. (4.6.8)

To make the equation more tractable we introduce further notation, using higher
dimensional vectors:

R =
(

P
Q

)
, H =

(
h
n

)
, J =

(
jP

jQ

)
, G =

(
gh

gn

)
, M =

(
ξ+ ξ−
ξ− ξ+

)
.

(4.6.9)
Using the above notation the generating functional can be written as:

Z0 =
⎥

D [R]D [H] exp

[
−1

2

⎥
dkdqH (k) M (k, q) H (q) +

⎥
dkG (−k) H (k)

]

× exp

[
i
⎥

dkHT (−k) G−1
0 (k) R (k) +

⎥
dkJ (−k) R (k)

]
. (4.6.10)

In this notation the Gaussian integral is more transparent. By performing the above
integrals we obtain:

Z0 = exp

(
1

2

⎥
dkJ (−k) G0 (−k) M (k) G0 (k) J (k)

)

× exp

(
i
⎥

dkG (−k) G0 (k) J (k)

)
. (4.6.11)

We recover the correlation functions by differentiating Z0 with respect to corre-
sponding source field:

〈
ihi (p) Pj (q)

⎡ = 〈
ini (p) Q j (q)

⎡ = C+
i j (p) δ (p + q) , (4.6.12)

〈
ini (p) Pj (q)

⎡ = 〈
ihi (p) Q j (q)

⎡ = C−
i j (p) δ (p + q) , (4.6.13)

where the propagators are:

C+
i j (p) = 1

2

(
1

iω + ν p2 + 1

iω + μp2

)
δi j , (4.6.14)

C−
i j (p) = 1

2

(
1

iω + ν p2 − 1

iω + μp2

)
δi j . (4.6.15)
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and 〈
Pi (p) Pj (q)

⎡ = 〈
Qi (p) Q j (q)

⎡ = G+
i j (p) δ (p + q) , (4.6.16)

G+
i j (p) = 2 |p|−y Pi j

(
A

ω2 + ν2 p4 + B

ω2 + μ2 p4

)
, (4.6.17)

〈
Pi (p) Q j (q)

⎡ = 〈
Qi (p) Pj (q)

⎡ = G−
i j (p) δ (p + q) , (4.6.18)

G−
i j (p) = 2 |p|−y Pi j

(
A

ω2 + ν2 p4 − B

ω2 + μ2 p4

)
. (4.6.19)

These propagators are all we need to know. By means of Wick’s theorem [47], all
the non-linear terms in the series expansion of the interacting part of the action can
be represented as combinations of these four propagators. The factor of 2 in the
physical fields propagators is a commonly used convention, which we adopt for later
comparison of our results with the literature.

Note, the propagators of the form
〈
Qi (p) Q j (q)

⎡
can be calculated directly from

the dynamic equations which is in fact a much simpler calculation. On the contrary,
the propagators which involve auxiliary fields can be directly read-off in the func-
tional integral formulation and are non-trivial if one is to compute them from the
equations of motion.

4.7 Renormalization Group Transformations

4.7.1 Coarse Graining

The first step in the RG program is coarse graining, where we systematically remove
small scale fluctuations. It is natural to introduce the smallest scale into the system;
call it α. The fluid description has a minimum length beyond which it breaks down.
For example, in turbulent flows such a scale is given by the viscosity. All of the
relevant physics is captured between this dissipation scale and the macro-scale. Thus,
we can think of α as the scale at which the energy is dissipated in the system by
viscosity. Note, we refer to α as a length scale in Fourier space, so the corresponding
physical length is of order α−1.

By separating the small scale fluctuations we effectively separate out the Fourier
modes of order α:

[0,α] ∞
[
0,αb−1

]⋃[
αb−1,α

]
, (4.7.1)

where b is a parameter such that b > 1. Due to the presence of non-linear terms in
the action only the linear term can be factorized upon such mode splitting:

Z0 =
(⎥

D [R<]D [H<] eA
<

0

)(⎥
D [R>]D [H>] eA

>
0

)
. (4.7.2)
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Let us symbolically write the non-linear part of the action as follows:

AI [R, H] = iλ
⎥

dx
(

F (1)
i,Int [P, Q] hi (x) + F (1)

i,Int [Q, P] ni (x)
)

. (4.7.3)

Thus, we can write:

Z =
⎥

D [R<]D [H<] eA
<

0

(⎥
D [R>]D [H>] eA

>
0 +AI [R,H]

)
. (4.7.4)

The expression cannot be evaluated exactly. However we can make use of the notion
of the functional average with respect to the fast modes free theory:

Z = Z >
0

⎥
D [R<]D [H<] eA

<
0

〈
eAI [R,H]

〉
>

, (4.7.5)

where we have defined the functional average as:

〈
eAI [R,H]

〉
>

=
∫
D [R>]D [H>] eA

>
0 +AI [R,H]

∫
D [R>]D [H>] eA

>
0

. (4.7.6)

This can be written in yet another way by exponentiating the average:

Z = Z >
0

⎥
D [R<]D [H<] exp

⎢
A <

0 + ln ⇒exp (AI [R, H])〉>
⎣
. (4.7.7)

The above expression is the central equation from which we proceed and form the
cumulant expansion. Note that formally we end up with a partition function which
describes a theory on the scale

[
0,αb−1

]
. To manage the calculation in a more

compact manner we employ diagrammatic techniques.
In order to proceed we need to define some diagrammatic rules. There are two

types of non-linear terms which we can identify:

hl
p1

i
p2

k

p3

= λ Rlik(−p1)δ (p1 + p2 + p3)

nl
p1

k
p3

i

p2

= λ Rlik(−p1)δ (p1 + p2 + p3)

Note, the difference between the two is the order in which physical fields are con-
tracted. We need to keep track of such indices’s throughout the calculation. Further,
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we have identified four types of free propagators in our theory. For each, we also
write a special diagrammatic symbol:

± ±
C±

ji (p) = j i , G±
ji (p) = j i (4.7.8)

Using the above representation, we are now in a position to calculate corrections to
the free theory from fast modes elimination by means of combining and permuting
the diagrams [48]. The detail of the analysis can be found in the Appendix B.

4.7.2 Rescaling

At this stage we also need to address a question of how various quantities scale under
spatial and temporal transformations. In contrast to the usual RG scaling procedure
we have used in the Coulomb gas problem, in the dynamic RG we have to introduce
an additional temporal exponent. Thus, the scaling transformations is defined as
follows:

p∗ = bp, ω∗ = bzω. (4.7.9)

Then, we can write for the fields:

P
(

b−1p∗, b−zω∗) = bη P ∗ ⎢p∗,ω∗⎣ , Q
(

b−1p∗, b−zω∗) = bη Q∗ ⎢p∗,ω∗⎣ ,

(4.7.10)

h
(

b−1p∗, b−zω∗) = bξh∗ ⎢p∗,ω∗⎣ , n
(

b−1p∗, b−zω∗) = bξn∗ ⎢p∗,ω∗⎣ .

(4.7.11)
We determine the scaling behavior of the coefficients by demanding that equations
of motion remain invariant under such transformation. For example, the linear part
of the action then transforms as

b−d−z
⎥

dpdωbξh (−p)
(

ib−zω + γ+b−2 p2
)

bηP (p) . (4.7.12)

We demand that the first order time derivative of the action remains invariant. This is
true of any dynamical system governed by a first order time derivative since we can
always rescale this term such that its coefficient remains at one. Thus we can write:

ξ + η = d + 2z. (4.7.13)

This allows to write for the coefficients:

γ∗± = bz−2γ±. (4.7.14)

Similarly we can derive the scaling relations for λ:
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λ∗ = bz+η−1λ. (4.7.15)

These considerations become handy when we aim to restore the cut-off of the large-
scale theory from αb−1 to α. The detailed examination of this step can be found in
the Appendix E. This step completes the series of steps involved in the RG program.

4.7.3 Differential RG Equations

After calculating explicitly all the loop integrals together with differential scale trans-
formations we arrive at the following set of equations:

dν

dτ
=
(

z − 2 + λ2

ν

[
A0

ν2

(
d2 − y − 4

2d (d + 2)

)
+ B0

μ2

(
y + d2

2d (d + 2)

)

+ (d2 − 2)

2d (d + 2)

(
A2

ν2 + B2

μ2

)
αd−2

]
Sd

(2π)d
αε

)
ν, (4.7.16)

dμ

dτ
=
(

z − 2 + λ2αε

μ (ν + μ)

[
A

ν

(d − 1)

d
+ B

μ

(d − 3)

d

]
Sd

(2π)d

)
μ, (4.7.17)

dλ

dτ
=
(

η − d − 1 − λ2αε

d (d + 2)

Sd

(2π)d
A

[
1

μν (ν + μ)
+ μ

ν2 (ν + μ)2

]

+ λ2αε

d (d + 2)

Sd

(2π)d
B

[
1

2μ3 + 1

μν (ν + μ)
+ ν

μ2 (ν + μ)2

])
λ, (4.7.18)

d A0

dτ
= (−d − z + 2ξ + y) A0, (4.7.19)

d B0

dτ
= (−d − z + 2ξ + y) B0, (4.7.20)

d A2

dτ
=
(

−d − z + 2ξ − 2 + λ2

A2

d2 − 2

d (d + 2)

[
A (α)2

ν3 + B (α)2

μ3

]
Sd

(2π)d
αε̃

)
A2,

(4.7.21)

d B2

dτ
=
(

−d − z + 2ξ − 2 + λ2

B2

d − 2

d

[
2A (α) B (α)

νμ (ν + μ)

]
Sd

(2π)d
αε̃

)
B2, (4.7.22)

where we have used the following definitions:

ε = d − y − 4, ε̃ = d − 2y − 6. (4.7.23)

These equations form the main result of this part of the thesis. The equations
describe the behaviour of the coefficients under an infinitesimal change of spatial
and temporal scales together and an infinitesimal reduction of degrees of freedom.
While some parts of these equations can be reduced to the results that can be found



82 4 Turbulent Flows

in the literature, which will be the subject of the next section, the equation for λ is
new. In our calculation the correction to λ is of order λ2. Some methods, such as
DIA, do not go to that order [20], others simply stop at λ2 [36], since the correction
is a result of including all 1-loop corrections. Therefore there is no way of checking
this result with previous studies. In what follows, we will focus on the regimes where
such corrections are not important however further investigation into the nature of
such higher order corrections is required and calls for a separate study. This will be
touched upon in the upcoming sections.

4.7.4 Consistency Check

The differential RG equations look rather complicated, so it is useful to invoke at
least a partial consistency check. For this reason we consider a particular regime,
namely we restrict the exponent y to simplify the above equations. Note, the choice
of y ≥ −2 makes the coefficients A2 and B2 irrelevant near a fixed point i.e. the RG
flow along these variables always points towards a fixed point. So in this regime we
can ignore noise corrections.

Further, let us now consider how we would reduce our original coupled set of
equations to pure NS equation. Simply by looking at the MHD equations we could
set b = 0, but by looking solely at the transformation of coefficients we cannot do
that. Instead, we can try to take the limit μ ∞ ≤. What does this limit mean for the
solution b? Consider first a regime μ ≥ 1, which in effect means that the magnetic
Reynolds number is very small, Rm ∈ 1. The role of the Reynolds number is to
measure the competition between linear and non-linear terms. In our regime, the
induction equation is dominated by the linear term in the above case. The equation
now has the form of a diffusion equation, which in dimensionless form is:

∂B̃
∂t

= 1

Rm
→2B̃ + δ. (4.7.24)

We can switch off the noise by setting the amplitude of the noise covariance to zero,
B = 0. Then we are left with:

∂B̃
∂t

= 1

Rm
→2B̃. (4.7.25)

The fundamental solution of this equation can be computed by Fourier transforms.
More importantly, the quantity R−1

m , plays the role of the diffusion constant. Finally
if we set μ ∞ ≤, then Rm ∞ 0 and R−1

m ∞ ≤, which in turn sets the solution
B̃ ∞ 0.

Taking the above effects into account we conclude that the RG equations for the
pure noisy NS equation are:
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dν

dτ
=
(

z − 2 + Aλ2

ν3

(
d2 − y − 4

2d (d + 2)

)
Sd

(2π)d
αε

)
ν, (4.7.26)

dλ

dτ
= (η − d − 1) λ, (4.7.27)

d A

dτ
= (−d − z + 2ξ + y) A. (4.7.28)

This set of equations is identical to that obtained previously [24].
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Chapter 5
Recursion Relations and Fixed Point Analysis

5.1 Hydrodynamics

We begin our discussion of the RG equations by considering neutral fluids with no
magnetic interactions. A detailed study can be found in [1, 2]. Our aim is to remark
on the results, primarily found in [1] and proceed to a more careful analysis of new
terms which are generated under RG.

5.1.1 Model A

5.1.1.1 Differential RG Equations

Consider a randomly forced NS equation with the forcing spectrum:

D(k) = D0k2 |k| < �

= 0, otherwise. (5.1.1)

By following the notation in [1] we refer to such a model as Model A. By making an
appropriate choice of the noise amplitude, chosen in accordance with the fluctuation-
dissipation theorem:

D0 = ∂0

α
kB T, (5.1.2)

the forcing in the Model A represents a fluid near equilibrium subject to random
fluctuations due to the molecular noise. In our prescription of the noise spectrum
Model A corresponds to the choice:

A2n = 0 → n ∞ 2 and n = 0. (5.1.3)

E. Barkhudarov, Renormalization Group Analysis of Equilibrium 85
and Non-equilibrium Charged Systems, Springer Theses,
DOI: 10.1007/978-3-319-06154-2_5, © Springer International Publishing Switzerland 2014
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The RG equations for this model are:

d∂

dδ
=
(

z − 2 + ˜Ad

(
φ2 D0�

ξ

∂3

⎡⎡
∂, (5.1.4)

dφ

dδ
= (η − d − 1) φ, (5.1.5)

d D0

dδ
=
(

−d − z + 2τ − 2 + ˜Ad

⎢
φ2 D0�

ξ

∂3

⎣⎡
D0, (5.1.6)

where we have identified A2 ≡ D0 and

˜Ad = Ad
Sd

(2λ)d
, Ad = d2 − 2

2d (d + 2)
. (5.1.7)

This set of differential equations can be conveniently re-written using a reduced
parameter:

x = φD1/2
0 �ξ/2∂−3/2. (5.1.8)

By re-writing differential equations in terms of the flow of the reduced parameter x
we can eliminate the exponents z (δ), η(δ) and τ (δ). This is advantageous because
we do not their values at the intermediate stages of the flow, only at fixed points.

The differential equation for x takes the form:

dx

dδ
= 1

2
(2 − d) x − ˜Ad x3. (5.1.9)

The behavior of the solution crucially depends on the sign of the linear term. In fact
we have already observed the importance of the dimension in determining the phase-
space portrait in the study of the d-dimensional Coulomb gas. It is a general feature
of all RG calculations. The spatial dimension d = 2 is the critical dimension of the
system. It separates two regions: when d > 2 the solution is driven to zero and when
d < 2 the system is driven to a stable fixed point:

lim
δ≤∗ x (δ) = 0 for d ∞ 2, (5.1.10)

lim
δ≤∗ x (δ) =

⎤
ξ

2 ˜A2−ξ

⎥1/2

for d < 2. (5.1.11)

The latter case of d < 2 is rather problematic for a description of a fluid. As a result
the d = 1 Burger’s equation is often studied in this region. We will not pursue this
study here and focus solely on d ∞ 2. Although the above finding follow directly
from the Eq. (6.1.9) they can also be extracted from the analytic form of the solution:

http://dx.doi.org/10.1007/978-3-319-06154-2_6
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x (δ) = x0e1/2ξδ

⎦
1 + 2 ˜Ad x2

0
(eξδ−1)

ξ

)1/2 , (5.1.12)

where ξ = d − 2. The above solution clearly displays the behavior in Eqs. (5.1.10)
and (5.1.11) .1 The decay of the solution is exponentially fast for d > 2. At d = 2
the solution falls as:

x (δ) = x0⎦
1 + 2 ˜Ad x2

0δ
)1/2 . (5.1.13)

Once we have established the behavior of the effective coefficient in the limit of
δ ≤ ∗, we are in a position to consider values of the scaling exponents. From the
Eq. (5.1.4) it follows that, at a fixed point, the dynamic exponent behaves as:

lim
δ≤∗ z (δ) = 2 for d ∞ 2, (5.1.14)

which is a consequence of the fact that:

d∂

dδ
= 0 at a fixed point. (5.1.15)

Analogous statements can be made about the values of other exponents. At this point
it is important to asses the role of other terms which are generated at 1-loop order,
which we will explore in the next section.

5.1.1.2 The Role of the Fluctuation-Dissipation Theorem

Model A can be thought of as a description of a fluid near equilibrium. This connection
is then supplemented by the fluctuation-dissipation theorem which requires [1]:

D0 = ∂0

α
kB T . (5.1.16)

From the differential RG equations, Eqs. (5.1.4)–(5.1.6), we have shown that the
reduced coupling x (δ) ≤ 0 as δ ≤ ∗, where the definition of this coupling is:

x (δ) = φ (δ) D1/2
0 (δ)�ξ/2∂−3/2 (δ) . (5.1.17)

By requiring the fluctuation-dissipation to hold at any point of the coarse-graining
step, i.e. for all δ, the reduced coupling should approach its limiting value through

1 The solution in Eq. (5.1.12) differs from [1]. In their chapter the solution is given as

x0e1/2ξδ

(
1 + 2 ˜Ad x2

0

(
eξδ−1

)
ξ

⎡1/2

, which differ from our result by a sign of the power 1/2.
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changes of φ (δ), while D0 (δ) and ∂ (δ) should remain at their initial values
throughout the RG trajectory. In order to keep D0 and ∂ fixed at their initial val-
ues we make the following choice for the dynamic exponent:

z (δ) = 2 − Ad x2 (δ) , (5.1.18)

With the above choice for z (δ) we have Ḋ0 = ∂̇ = 0, given we use the scaling
relation:

τ = z + 1

2
d. (5.1.19)

Further, we have to show that under such a choice the perturbation parameter φ does
go to zero. The differential RG equation for φ is:

dφ (δ)

dδ
= (η − d − 1) φ (δ) . (5.1.20)

With the above choice for z and a restriction that the noise coefficient does not change,
we have to conclude that, together with d + 2z = τ + η, we can write:

dφ (δ)

dδ
=
(

1 − d

2
− Ad x2 (δ)

⎡
φ (δ) . (5.1.21)

We can solve this differential equation for φ:

φ (δ) = φ0e
δ
⎦

2−d
2

)
−Ad

⎧ δ
0 x2(l)dl

. (5.1.22)

Already, we observe that φ goes to zero exponentially fast for d > 2. In fact, we can
integrate x2 (δ) exactly to obtain a complete solution:

δ⎪

0

dl
x2

0 e−|ξ|l(
1 + 2x2

0Ad |ξ|−1 − 2x2
0Ad |ξ|−1 e−|ξ|l)

= 1

2Ad
ln
⎦

1 + 2x2
0Ad |ξ|−1 − 2x2

0Ad |ξ|−1 e−|ξ|δ) , (5.1.23)

For δ ∀ 1 the exponential term can be dropped and for d ∞ 2 we have:

φ (δ) =
⎨⎩


φ0e(2−d/2)δ(
1+2x2

0Ad |ξ|−1)1/2 for d > 2,

φ0(
1+2x2

0Adδ
)1/2 for d = 2.

We observe that φ (δ) ≤ 0 as δ ≤ ∗ in exactly the same way as x (δ), which is to
be expected given above considerations. Note that each RG step does not alter the
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large-scale behavior of the system. Therefore, we can calculate the desired large scale
properties in the form of correlation functions either from the bare theory or from
the renormalized theory, the answer would be the same. However, as we have shown,
at the macro-scale description the effective parameter φ goes to zero, meaning that
the effective theory is described by a linear equation. All terms proportional to φn ,
where n ∞ 1, become irrelevant [3] and the dynamics is governed by the equation:

βt v = ∂∈2v + f . (5.1.24)

5.1.1.3 Homogeneity Relation and Energy Spectrum

An important quantity of interest in fluids is the energy spectrum. Consider the total
energy density of the system. It is related to the correlation function via the following
equation:

E = 1

2
Tr
⎪

ddk

(2λ)d+1

ddq

(2λ)d+1 dσdη
〈
vi (k, σ) v j (q,η)

〉
, (5.1.25)

where the trace runs over the indices. This can be conveniently expressed in terms
of the correlation functions:

〈
vi (k, σ) v j (q,η)

〉 = Gi j (k, σ) ψ (k + q) ψ (σ + η) , (5.1.26)

which gives:

E = 1

2
Tr
⎪

ddk

(2λ)d+1 dσGi j (k, σ) . (5.1.27)

We can now define the energy spectrum density as:

E (k) = 1

2

Sd

(2λ)d+1 kd−1Tr
⎪

dσGi j (k, σ) . (5.1.28)

We are interested in how does this energy spectrum density scale with k. To
investigate that we consider how the correlation function behave under fast modes
elimination. The RG transformation does not alter the behavior of the long wave
modes. Thus, we can calculate the correlation function either from the bare theory or
from the renormalized theory with renormalized coefficients. Mathematically, this
statement is equivalent to saying that the correlation function is homogeneous:

Gi j (k, σ, φ0) = b−χ(δ)Gi j

⎦
eδk, eα(δ)σ, φ̄ (δ)

)
. (5.1.29)

We can derive the scaling rules for the correlation function by considering the
following:
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⎪
dqdη

〈
vi (k, σ) v j (q,η)

〉 = b−z−d
⎪

dq⇒dη⇒ 〈vi
(
b−1k⇒, b−zσ⇒) v j

(
b−1q⇒, b−zη⇒)〉

= b2η−z−d
⎪

dq⇒dη⇒ 〈vi
(
k⇒, σ⇒) v j

(
q⇒,η⇒)〉

= e2η−z−d Gi j

⎦
eδk, eα(δ)σ, φ̄ (δ)

)
. (5.1.30)

The last line follows from the rescaling of the fields and re-expressing the correlation
function in terms of rescaled variables. We can exploit some of the scaling relations
used in the previous section to arrive to the following equation:

Gi j (k, σ, φ0) = e
⎧ δ

0 z(δ⇒)dδ⇒
Gi j

⎦
eδk, eα(δ)σ, φ̄ (δ)

)
. (5.1.31)

The correlation functions scales like the frequency exponent, therefore up to the
leading order in k we have that the energy spectrum goes as:

E (k) ∝ kd−1. (5.1.32)

This result holds for d ∞ 2.

5.1.2 Galilean Invariance

So far we have concluded that the asymptotic form of the equation of motion is a
linear equation:

βt v = ∂∈2v + f, (5.1.33)

which is a consequence of a fluctuation-dissipation theorem. However, the above
equation does not preserve the symmetry of the original Navier-Stokes equation, the
Galilean symmetry. It will be shown, based on the work of [4, 5], that, in general,
the Galilean symmetry does not put any constraints on the vertex renormalization (the
non-linear term) because, as in the Model A case, one often is interested in velocity
fluctuations around the mean value of the velocity field. The velocity fluctuations are
in fact velocity differences, so they are invariant under the Galilean transformation
from the outset.

5.1.2.1 The Symmetry of the Equation of Motion

Consider the Navier-Stokes equation with the pressure term explicitly present:

βVi

βt
+ Vj

βVi

βx j
= − β P

βxi
+ ∂0∈2Vi , ∈ · V = 0. (5.1.34)
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Taking divergence of the above equation leads to:

∈2 P = − β2

βxiβx j

(
Vj Vi

)
. (5.1.35)

The Galilean transformation is a transformation of variables of the form:

x⇒ = x⇒ (x, t) , t ⇒ = t ⇒ (x, t) , (5.1.36)

such that
x⇒ = x − φct, t ⇒ = t. (5.1.37)

The derivatives in the equation of motion then transform:

β

βxi
= ψi j

β

βx ⇒
j
,

β

βt
= −φci

β

βx ⇒ i
+ β

βt ⇒
. (5.1.38)

In order to preserve the equation of motion under such transformation we require
that the field transforms as

V ⇒
i

(
x⇒, t ⇒

) = Vi
(
x⇒ + φct ⇒, t ⇒

)− φci . (5.1.39)

By explicitly performing the transformation we arrive at the result:

−φc j
βV ⇒

i

(
x⇒, t ⇒

)
βx ⇒

j
+ βV ⇒

i

(
x⇒, t ⇒

)
βt ⇒

+ V ⇒
j

(
x⇒, t ⇒

) βV ⇒
i

(
x⇒, t ⇒

)
βx ⇒

j
+ φc j

βV ⇒
i

(
x⇒, t ⇒

)
βx ⇒

j

= −β P ⇒

βx ⇒
i

+ ∂0∈2V ⇒
i

(
x⇒, t ⇒

)
. (5.1.40)

Now, by setting φ = 1 we obtain the transformed equation in a new reference frame:

βV ⇒
i

(
x⇒, t ⇒

)
βt ⇒

+ V ⇒
j

(
x⇒, t ⇒

) βV ⇒
i

(
x⇒, t ⇒

)
βx ⇒

j
= −β P ⇒

βx ⇒
i

+ ∂0∈2 (V ⇒
i

(
x⇒, t ⇒

))
. (5.1.41)

The equation is invariant under a Galilean transformation. From the above
considerations we conclude that if under the RG transformation the coefficient of the
non-linear term changes then the Galilean invariance will be broken.

5.1.2.2 Reynolds Decomposition

The linear equation which results from a repeated RG transformation appears to
violate Galilean invariance. However, recall that Model A is a theory formulated to
describe equilibrium fluctuations of the fluid. Thus, the equation derived expresses
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the fluctuations of the velocity field around some mean value. This point was heavily
emphasized by [4]. Here, we would like to explicitly illustrate this idea.

Consider expressing the velocity field V in terms of its mean value and fluctuations
around the mean:

V = U + u, (5.1.42)

such that
≥V∼ = U. (5.1.43)

The ≥·∼ is an ensemble average. Analogously we decompose the pressure:

P = Pav + p. (5.1.44)

Now, consider field transformation under Galilean transformation while taking into
account Reynolds decomposition:

U ⇒
i

(
x⇒, t ⇒

)+ u⇒
i

(
x⇒, t ⇒

) = Ui
(
x⇒ + φct ⇒, t ⇒

)+ ui
(
x⇒ + φct ⇒, t ⇒

)− ci . (5.1.45)

We can derive how each part of the decomposed velocity field transforms by taking
the ensemble average of the above expression. We conclude:

U ⇒
i

(
x⇒, t ⇒

) = Ui
(
x⇒ + φct ⇒, t ⇒

)− ci , (5.1.46)

which implies:
u⇒

i

(
x⇒, t ⇒

) = ui
(
x⇒ + φct ⇒, t ⇒

)
. (5.1.47)

The above is a field transformation for the fluctuating part of the velocity field. If we
assume that the mean part is a constant in space and time we can write the equation
of motion for the fluctuations:

βui

βt
+ U j

βui

βx j
+ β

(
u j ui

)
βx j

= − βp

βxi
+ ∂0∈2ui . (5.1.48)

This equation is Galilean invariant under:

u⇒
i

(
x⇒, t ⇒

) = ui
(
x⇒ + φct ⇒, t ⇒

)
, U ⇒

i = Ui − ci ,
β

βt
= −ci

β

βx ⇒ i
+ β

βt ⇒
. (5.1.49)

Further note that if we move into the co-moving frame of reference the second term
in Eq. (6.1.49) can be eliminated to give:

βui

βt
+ β

(
u j ui

)
βx j

= − βp

βxi
+ ∂0∈2ui . (5.1.50)

http://dx.doi.org/10.1007/978-3-319-06154-2_6
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It must be noted that now, the equations are already Galilean invariant and there is no
way of directly testing it without moving away from the co-moving frame. The key
is to note that Eq. (5.1.34), our original equation of motion, bears the same form.
However they represent two different fields and therefore they do not transform in
the same way.

5.1.2.3 Vertex Renormalization

Consider the Galilean transformations in Fourier space, where we define the Fourier
transform as:

f (k, t) =
⎪

dx f (x, t) e−ik·x. (5.1.51)

The fields are transformed as

Ṽ ⇒
i

(
k, t ⇒

) = eiφk·ct ⇒ Ṽi
(
k, t ⇒

)− ciψ (k) , (5.1.52)

while the pressure term transform as:

P
(
x⇒ + φct ⇒, t ⇒

) = P ⇒ (x⇒, t ⇒
)
. (5.1.53)

Hence, in Fourier space we have:

P̃ ⇒ (k, t ⇒
) = eiφk·ct P̃

(
k, t ⇒

)
. (5.1.54)

The Navier-Stokes equation in Fourier space takes the form from:

β Ṽi (k, t)

βt
+ ik j

⎪
dq

(2λ)d
Ṽ j (q, t) Ṽi (k − q, t)

= −iki P̃ (k, t) − k2∂0Ṽi (k, t) . (5.1.55)

Consider how fields transform under Reynolds decomposition in wave number space:

Ṽ i
(
k, t ⇒

) = Ũi
(
k, t ⇒

)+ ũi
(
k, t ⇒

)
. (5.1.56)

It follows that the transformation rules are:

Ũ ⇒
i

(
k, t ⇒

) = eiφk·ct ⇒Ui
(
k, t ⇒

)− ciψ (k) , (5.1.57)

and
ũ⇒

i

(
k, t ⇒

) = eiφk·ct ⇒ ũi
(
k, t ⇒

)
. (5.1.58)
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The equation of motion for the fluctuating fields can be readily obtained (assuming
constant average velocity independent of space-time coordinateUi (k, t) = Kiψ (k)):

β ũi (k, t)

βt
+ ik j K j ũi (k, t) + ik j

⎪
dq

(2λ)d
ũ j (q, t) ũi (k − q, t)

= −iki p̃ (k, t) − k2∂0ũi (k, t) . (5.1.59)

At last we can concentrate on the consequences of the Galilean invariance on RG
in the laboratory frame. Let us split the fluctuating field into fast and slow Fourier
components:

ũi (k, t) = ũ>
i (k, t) + ũ<

i (k, t) . (5.1.60)

Substitute this into the equation of motion:

−iki p̃< (k, t) − k2∂0ũ<
i (k, t) = β ũ<

i (k, t)

βt
+ ik j K j ũ<

i (k, t)

+ ik j θ
⎦

k − �b−1
) ⎢⎪ dq

(2λ)d
ũ<

j (q, t) ũ<
i (k − q, t)

+ ik j

⎪
dq

(2λ)d
ũ>

j (q, t) ũ<
i (k − q, t)

+ ik j

⎪
dq

(2λ)d
ũ<

j (q, t) ũ>
i (k − q, t)

+ ik j

⎪
dq

(2λ)d
ũ>

j (q, t) ũ>
i (k − q, t)

⎣
. (5.1.61)

We assume that we have come up with some procedure which would give us a coarse
grained description of slow modes. This would generally include corrections to the
viscosity and the vertex:

β ũ<
i (k, t)

βt
+ ik j K j ũ<

i (k, t) + ik j θ
⎦

k − �b−1
)

φ (k)

⎪
dq

(2λ)d
ũ<

j (q, t) ũ<
i (k − q, t)

= −iki p̃< (k, t) − k2∂0 (k) ũ<
i (k, t) . (5.1.62)

The way our equation transforms puts no restriction on the vertex renormalization
as they are still Galilean invariant. The additional term introduced from the time
derivative is canceled by transformation of K j .

The above considerations illustrate that the linear theory which governs macro-
scopic fluctuations in an equilibrium fluid is consistent with the original symmetries
of the problem. Further, one should not invoke Galilean symmetry to justify non-
renormalizability of the vertex function. In fact, the above considerations can be made
more rigorous using the functional integral formulation by studying consequences
of continuous symmetries.
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5.1.2.4 Ward-Takahashi Identities and Field-Theoretic Approach

In the field theory formalism continuous symmetries of the system provide a natural
mechanism to study relationships between verticies [6, 7]. The resultant equations
are valid to all orders in perturbation theory. Here, we would like to touch upon such
a development in the context of the Navier-Stokes equation [5, 10].

By definition, a symmetry operation implies that the action remains invariant under
the transformation. A continuous symmetry can be made infinitesimally small, so
let us consider what this means for the Galilean transformations. The generating
functional can be readily derived from the full MHD generating functional. It has
the form:

Z [J, �] =
⎪

D [u]D [σ ] exp

(
−S [u, σ ] +

⎪
dxdtJ · u

+
⎪

dxdtJ · K +
⎪

dxdt� · σ

⎡
, (5.1.63)

where the action is defined as:

S [u, σ ] =
⎪

dx
⎪

dt

[
1

2

⎪
dyσi (x, t) Di j (x − y) σ j (y, t)

− iσk

⎤
βuk

βt
+ K j

βuk

βx j
+ φ0 Pkj (∈)

β
(
ui u j

)
βxi

− ∂0∈2uk

⎥]
. (5.1.64)

K j is just a constant which represents the average fields and u j are fluctuations
about it. Under a symmetry transformation the action remains invariant by definition.
The only change comes from the products of physical fields with the source fields.
Consider infinitesimal transformations of the field under the action of the Galilean
transformation:

ui (x + ψct, t) = ui (x, t) + ψc j t∈ j ui (x, t) , (5.1.65)

σi (x + ψct, t) = σi (x, t) + ψc j t∈ jσi (x, t) . (5.1.66)

This would generate an infinitesimal change in the generating functional:

ψZ [J, �] =
〈⎪

dxdt
[
Ji
(
ψc j t∈ j ui (x, t)

)− ψci Ji + �iψc j t∈ jσi (x, t)
]〉 = 0,

(5.1.67)
which can be re-written as

⎪
dxdt

⎢
t Ji∈ j

ψ

ψ Ji (x, t)
− J j + t�i∈ j

ψ

ψ�i (x, t)

⎣
Z [J, �] = 0, (5.1.68)
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by exploiting the fact that Z [J, �] is a generating functional and therefore all the
fields can be expressed as derivatives with respect to the corresponding source field.
An important detail is that the mean field K is treated on equal grounds with u and
hence they have the same conjugate field. So if we try to compute the average field
≥V∼ we would obtain K, which is consistent with the Reynolds decomposition.

To this end we have derived a functional equation which provides us with an
infinite number of relations relating various correlation functions. These are gen-
erated by taking various derivatives of Eq. (5.1.68). The set of equations gener-
ated as a result are referred to as Ward-Takahashi identities. However, as it stands,
these equations are cumbersome since, by working with the generating functional
Z [J, �], we would generate all kinds of Feynman graphs: connected, disconnected,
1-particle-reducible and 1-particle-irreducible. Instead of working with Z [J, �],
one can work with a “free energy” analogue. Consider the quantity:

F [J, �] = lnZ [J, �] . (5.1.69)

The new functional satisfies:
⎪

dxdt

⎢
t Ji∈ j

ψF [J, �]

ψ Ji (x, t)
− J j + t�i∈ j

ψF [J, �]

ψ�i (x, t)

⎣
= 0. (5.1.70)

Even though we have reduced the number of graphs we have to consider, this is
still not the most convenient form to use because both 1-particle-reducible and
1-particle-irreducible diagrams are generated. Instead one chooses to work with the
Legendre transform of F [J, �] [8, 9]. It allows us to work exclusively in terms
of 1-particle-irreducible diagrams. Further, this form is the most useful to us since
under RG the leading corrections to the vertex renormalization φ and to the viscosity
∂ are represented by 1-particle-irreducible diagrams. The connection between the
two is most conveniently expressed through the Legendre transform of F , which is
also known as the vertex function.

To introduce the Legendre transform we begin by defining new field variables:

ψF [J, �]

ψ Ji
= u + K,

ψF [J, �]

ψ�i
= σ i . (5.1.71)

Then we define a functional:

� [u + K, σ ] = −F [J, �] +
⎪

dx
⎪

dt (J · (u + K)+� · σ), (5.1.72)

ψ� [u + K, σ ]

ψ (u + K )i
= Ji ,

ψ� [u + K, σ ]

ψσ i
= �i . (5.1.73)
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These sets of definitions implies that � satisfies the equation:

⎪
dxdt

⎢
t

ψ�

ψ (u + K )i
∈ j (ui + Ki ) + t

ψ�

ψσ i
∈ jσ i − ψ�

ψ (u + K ) j

⎣
= 0. (5.1.74)

Consider differentiation the above expression with respect to (u + K )k
(
y, t ⇒

)
.

This results in an expression:

0 =
⎪

dxdt
ψ2�

ψ (u + K )k (y, t ⇒) ψ (u + K )i (x, t)
∈ j (ui + Ki )

+
⎪

dxdt
ψ�

ψ (u + K )i (x, t)
∈ jψkiψ (x − y) ψ

(
t − t ⇒

)

+
⎪

dxdt
ψ2�

ψσ i (x, t) ψ (u + K )k (y, t ⇒)
∈ jσ i

−
⎪

dxdt
ψ2�

ψ (u + K )k (y, t ⇒) ψ (u + K ) j (x, t)
. (5.1.75)

Further, let us differentiate the last expression with respect to ψ
ψσs (z,t ⇒⇒) . As with other

generating functionals we set the fields σ and (u + K ) to zero at the end of the
desired calculation. Note setting (u + K ) = 0 to zero corresponds to the isotropic
homogeneous flow i.e. no symmetry breaking, while (u + K ) = K , corresponds to
a broken symmetry case, since the flow has a preferred direction K . As we have
established in the previous section, in order to be able to test for Galilean invariance
one has to be out of the co-moving frame of reference, the laboratory frame. Hence we
choose to consider the relationships in a broken symmetry case. The final relationship
reads:

0 = − ψci

⎪
dxdt

ψ3�

ψσs (z, t ⇒⇒) ψ (u + K )k (y, t ⇒) ψ (ui + Ki ) (x, t)

− t ⇒ψc · ∈y
ψ2�

ψσs (z, t ⇒⇒) ψ (u + K )k (y, t ⇒)

− t ⇒⇒ψc · ∈z
ψ2�

ψ (u + K )k (y, t ⇒) ψσ s (z, t ⇒⇒)
. (5.1.76)

In effect we have expanded the vertex function around the mean flow. We can further
simplify the above expression to have an exact correspondence with [5] by noting that
the vertex function is translationally invariant as a consequence of the assumption
that we are in a homogeneous flow. Consider a more compact notation:

ψ2�

ψσn (z, t ⇒⇒) ψ (us + Ks) (y, t ⇒)
= �[1,1]

ns

(
z, t ⇒⇒; y, t ⇒

)
, (5.1.77)
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then it follows from translational invariance that:

�[1,1]
ns

(
z, t ⇒⇒; y, t ⇒

) = �[1,1]
ns

(
z + a, t ⇒⇒ + T ; y + a, t ⇒ + T

)
. (5.1.78)

By choosing a = −z and T = −t ⇒⇒ we observe:

�[1,1]
ns

(
z, t ⇒⇒; y, t ⇒

) = �[1,1]
ns

(
0, 0; y − z, t ⇒ − t ⇒⇒

)
. (5.1.79)

Hence, the vertex function is a function of temporal and spatial difference only. It
follows:

ψci

⎪
dxdt�[1,2]

ski

(
y − z, t ⇒ − t ⇒⇒; x − z, t − t ⇒⇒

) = (t ⇒⇒ − t ⇒
)
ψc · ∈y�

[1,1]
sk

(
y − z, t ⇒ − t ⇒⇒

)
.

(5.1.80)
The above result is valid to all order in the perturbation theory. In other words, it is
exact. Further, we can clearly exploit the connection between the two-point and a
three-point vertex from the above example which is what was done in [5]. In practice
one often chooses to work in Fourier space since the problem of diverging integrals
is more apparent through Fourier modes. Thus, in Fourier space,one derives:

− ki
β

βσ
�

[1,1]
ks (−k,−σ) = �

[1,2]
ski (k, σ; q,η). (5.1.81)

We stress that these results are exact, so one can exploit them at any order of the
perturbative expansion. As a consequence of the identity Eq. (5.1.82), it can be shown
that vertex corrections are only partially constrained. Specifically, only in the case
of zero momentum transfer, as a consequence of the Galilean symmetry, the vertex
does not renormalize.

An important aspect of the above derivation of the Ward identities is the fact
that the action is formulated explicitly in the laboratory frame of reference, whereby
the mean flow velocity is explicitly present. As was pointed out by McComb [4],
in order to establish Galilean invariance one has to be out of the co-moving frame.
This is exactly the reason for formulating the functional integral through Reynolds
decomposition.

5.1.3 Relevant, Marginal and Irrelevant Variables

5.1.3.1 Higher Order Corrections in External Momentum

The first aspect which we would like draw attention to are the loop corrections
themselves. We have performed an expansion in external momentum and kept only
the lowest order terms. To asses the role of higher order terms let us go back to a
graphical representation of our results. Up to 1-loop order the corrections to the noise
covariance can be expressed diagramatically:
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Fig. 5.1 Corrections to noise covariance up to 1-loop order

p−q

q

f0 f2 p
2

Fig. 5.2 Taylor expansion of the loop in the external momentum

Figure 5.1 refers to Elssaser variables. In the limit of the Navier-Stokes equation,
the loop correction is identical in the last two terms, which accounts for the symmetry
factor of 2. Consider the Taylor expansion of the loop in the external momentum:

Every term in this Taylor expansion is proportional to:

f2i ∝ D0x0

�⎪

�b−1

kd−3dk → i ∝ {0, 1, . . . } (5.1.82)

The above proportionality relation identifies regimes where the perturbation theory
is applicable. This crucially depends on the dimension. For d > 2 the integral is
convergent in the limit of b ≤ ∗. For d = 2 perturbation theory diverges logarith-
mically. Consider what happens upon rescaling of the cut-off and the corresponding
rescaling of the fields and other variables. The left-hand side of the diagrammatic
equation in Fig. 5.2 can be written in terms of its scaling factors as:

Db (k) = b−d−z+2τ−2k2
⎦

D0 + f0 (D0, x0) + b−2k2 f2 (D0, x0) + · · ·
)
,

(5.1.83)
where D0 is a 0-loop order coefficient of the noise covariance. Db denotes a general
form of the noise covariance after a shell of thickness b of fast Fourier modes has been
eliminated. By explicitly looking at the loop integrals, one observes that it depends
only on the effective coupling and D0. Consecutive mode elimination leads to:

Db(n+1) (k) = b(n+1)(−d−z+2τ−2)k2 Dn
0

⎦
1 + f0 (xn) + b−2k2 f2 (xn) + · · ·

)
(5.1.84)

By looking at a fixed point solution to lowest order in the expansion, we can asses the
role of higher order terms. A fixed point would correspond to the following equation:

D∗
0 = b(n+1)(−d−z+2τ−2) D∗

0 (1 + f0 (xn)) → n. (5.1.85)
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h<s P<
k h<s P<

k h<s i
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p−q

q

m

t P<
k other combinations

Fig. 5.3 Corrections to γ+ coefficient in Elssaser variables up to 1-loop order

We have shown that x (δ) ≤ 0 which in turn suggests that f0 (xn) ≤ 0 as δ ≤ ∗.
Thus, at a fixed point, the following relationship must hold:

2τ = 2 + d + z. (5.1.86)

As a consequence, higher-order corrections are irrelevant. In particular, terms of the
form p4 and higher powers of p in the noise covariance are irrelevant. Also note that
even at d = 2 although f0 goes as ln b as b ≤ ∗, the effective coupling goes as
1/δ which cancels the integral. In that sense higher-order terms decay even faster
(Fig. 5.3).

Similar considerations can be applied to the response function:
By considering the Taylor expansion of the loop integral, after rescaling we can

write:
γ b+ (k) = bz−2γ 0+

⎦
k2 + g0 (x0) k2 + b−2g2 (x0) k4+

)
, (5.1.87)

where g0 + g2k2 + · · · is a Taylor expansion in external momenta of all combined
loop diagrams. It is apparent that on the basis of the discussion of the noise covariance,
higher-order terms are irrelevant near a fixed point. The same is true of higher-order
corrections to φ. All of the above considerations are simplified by the fact that we
have a single effective coupling on which the behavior of a loop diagram depends.
Also, in both cases, for γ± and φ, the loop diagram is once again proportional to
x0
⎧�

�b−1 kd−3dk to all orders in the external momentum. So everything remains
finite when we take the limit b ≤ ∗.

5.1.3.2 Connected Graphs

Our formalism within the RG calculation allowed us to ignore terms which are
disconnected because they all cancel. Within the diagrammatic expansion tech-
nique there exists one further classification of diagrams into 1-particle-reducible and
1-particle-irreducuble diagrams. For example, consider a diagram:

We can cut the middle line to break the diagram into two irreducible diagrams.
The effect of such terms has to be assessed within our RG framework.

The graphical representation in Fig. 5.4 represents a multiplicative noise term.
There are no loops present, so we do not have to carry out any integration over fast
Fourier modes. We are only concerned with restoring the momentum cut-off to �.
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l3 i2−

k3 l2

Fig. 5.4 An example of a reducible diagram, which is generated at 1-loop order

l1 k2
−

k1 i2

Fig. 5.5 A term which is generated under RG at 1-loop order

Under such rescaling transformation the graph scales as b−d+2, which means that
in the regime d > 2 this term is irrelevant as δ ≤ ∗. However, at d = 2 this term
is marginal. We cannot asses its magnitude and without higher order analysis we
cannot establish whether x (δ ≤ ∗) = 0 is a true fixed point.

Consider a reducible diagram which is generated under the RG in Fig. 5.5. Under
the scale transformation this graph scales as b0 for all values of d. As has been
mentioned, the effect of marginal terms cannot be assessed without analyzing higher-
order terms. This strategy is fine as long as there is a finite number of marginal terms
in the expansion. However as has been shown by [3] there are infinitely many such
terms even at the level of 1-loop.

To extend the scaling argument for the marginal terms to all order in φ, consider
how an arbitrarily large graph of order φn behaves under scaling [3]. In general we
can write how various components of the diagram depicted in Fig. 5.6 scale:

Scaling of integrals = −2n (d + z),

Derivatives = −n,

Correlation function = (n − 1) (2 + d + z),

Physical fields = (n + 1)η,

Noise = τ.

By adding all the scaling contributions one can convince himself that they add
up to zero, which means that there are infinitely many marginal terms generated in
our expansion. This has a destructive effect on the whole RG procedure, since a
simple higher order analysis is impossible and therefore we cannot truly establish
the existence of fixed points in our analysis and would require us to consider an
infinite parameter space to specify the action. In the context of the randomly-forced
Navier-Stokes equation, the existence of infinitely many marginal terms, under a
particular choice of exponents, was first pointed out by [3]. Inspite of this apparent
difficulty, the scaling which is motivated through the fluctuation-dissipation theorem,
such terms are irrelevant.
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λ (1) λ (2)

... ...
λ(n)

Fig. 5.6 A marginal term of order φn which is generated under RG at 1-loop order

5.1.3.3 Terms of Higher Order in λ

It is worth reminding the reader that our calculation is done within a loop
approximation. Thus, we should consider all terms which are generated at 1-loop
order. This requires us in principle to go to arbitrary large order in φ. We have already
seen such an example of 0-loop term, Fig. 5.6. For the Model A we have identified
the effective expansion coefficient x (δ), which goes to zero for d ∞ 2. It therefore
follows that correction of higher order in φn are negligible in the limit of δ ≤ ∗ for
the Model A analysis.

5.2 Magnetohydrodynamics

5.2.1 RG Equations

The RG equations we have derived are (y = −2):

d∂

dδ
=
(

z − 2 + φ2

∂

d2 − 2

2d (d + 2)

(
A

∂2 + B

μ2

⎡
Sd

(2λ)d
�d−2

⎡
∂, (5.2.1)

dμ

dδ
=
(

z − 2 + φ2

μ (∂ + μ)

⎢
A

∂

(d − 1)

d
+ B

μ

(d − 3)

d

⎣
Sd

(2λ)d
�d−2

⎡
μ, (5.2.2)

dφ

dδ
=
(

η − d − 1 − φ2�d−2

d (d + 2)

Sd

(2λ)d
A

⎢
1

μ∂ (∂ + μ)
+ μ

∂2 (∂ + μ)2

⎣

+ φ2�d−2

d (d + 2)

Sd

(2λ)d
B

⎢
1

2μ3 + 1

μ∂ (∂ + μ)
+ ∂

μ2 (∂ + μ)2

⎣⎡
φ, (5.2.3)

d A

dδ
=
(

−d − z + 2τ − 2 + φ2

A

d2 − 2

2d (d + 2)

⎢
A2

∂3 + B2

μ3

⎣
Sd

(2λ)d
�d−2

⎡
A,

(5.2.4)

d B

dδ
=
(

−d − z + 2τ − 2 + φ2

B

d − 2

2d

⎢
2AB

∂μ (∂ + μ)

⎣
Sd

(2λ)d
�d−2

⎡
B. (5.2.5)

In the description of randomly forced MHD equations we have mentioned in the
previous chapters that the flow is characterized by a set of dimensionless couplings.
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If we consider the above equations to order φ2 then we can identify three such
effective couplings:

x2 = φ2 A

∂3 , y2 = φ2 B

μ3 , z2 = ∂

μ
. (5.2.6)

These quantities represent the effective Reynolds number, magnetic Reynolds
number and the Prandtl number, which measures relatives strength of dissipative
forces. Without loss of generality the cut-off has been set to unity, � = 1. For the
moment let us consider the equations :

d∂

dδ
= (z − 2) ∂ + Ad x2∂ + Ad

y2

z2 ∂ (5.2.7)

dμ

dδ
= (z − 2) μ + z4x2

z2 + 1

⎢
(d − 1)

d

Sd

(2λ)d

⎣
μ + y2

z2 + 1

⎢
(d − 3)

d

Sd

(2λ)d

⎣
μ,

(5.2.8)

dφ

dδ
= (η − d − 1) φ, (5.2.9)

d A

dδ
= (−d − z + 2τ − 2) A + Ad x2 A + Ad

z6 y4

x2 A, (5.2.10)

d B

dδ
= (−d − z + 2τ − 2) B + x2z4

z2 + 1

⎢
d − 2

d

Sd

(2λ)d

⎣
B. (5.2.11)

Note, the choice of y = −2 once again corresponds to a fluid near equilibrium, so
the fluctuation-dissipation theorem must hold once again. Consider re-writing the
equations in terms of the reduced variables:

dx

dδ
= 1

2
x (2 − d) − Ad x3 + 1

2
Ad x

(
z6 y4

x2 − 3
y2

z2

⎡
, (5.2.12)

dy

dδ
= 1

2
y (2 − d) + yx2z4

z2 + 1
Bd − 3

2

y3

z2 + 1
Cd , (5.2.13)

dz

dδ
= 1

2
Ad x2z + 1

2
Ad

y2

z2 z − 1

2

z5x2

z2 + 1
Ed − 1

2

zy2

z2 + 1
Cd , (5.2.14)

where we have defined the following quantities:

Ad = d2 − 2

2d (d + 2)

Sd

(2λ)d
, Bd =

(
2 − 4d

2d

⎡
Sd

(2λ)d
, Cd = (d − 3)

d

Sd

(2λ)d
, Ed = (d − 1)

d

Sd

(2λ)d
.

(5.2.15)

Now we can investigate a number of different regimes.



104 5 Recursion Relations and Fixed Point Analysis

5.2.1.1 Kinetic Regime

Consider a model where the stochastic noise enters only the NS equation. It would
feed into the induction equation through the non-linear term in the NS equation which
couples it to the magnetic field. Such a regime would correspond to a choice when
B = 0. Using the equations for the reduced couplings, the so called kinetic regime,
would be described by a set of equations:

dx

dδ
= 1

2
x (2 − d) − Ad x3, (5.2.16)

dz

dδ
= 1

2
Ad x2z − 1

2

z5x2

z2 + 1
Ed . (5.2.17)

We have previously solved the equation for x . The solution reads:

x (δ) = x0e1/2ξδ

⎦
1 + 2Ad x2

0
(eξδ−1)

ξ

)1/2 . (5.2.18)

The equation for z is separable which allows us to write:

z(δ)⎪

z(δ0)

(
z2 + 1

)
dz

Ad z3 + Ad z − Ed z5
= 1

2

δ⎪

δ0

x0eξδdδ⎦
1 + 2Ad x2

0
(eξδ−1)

ξ

) . (5.2.19)

The RHS admits a compact form upon integration:

1

2

δ⎪

δ0

x0eξδdδ⎦
1 + 2Ad x2

0
(eξδ−1)

ξ

) = 1

4Ad
ln
⎦

1 + 2x2
0Ad |ξ|−1 − 2x2

0Ad |ξ|−1 e−|ξ|δ).
(5.2.20)

Solution to the LHS is more involved. Although it admits an exact analytic solution,
the resultant equation does not permit a simple rearrangement into a solution of the
form z = f (δ), where f is some function. For that reason we will not attempt to
write the explicit form here. The fixed point value of z can be readily deduced directly
from the differential RG equation:

dz

dδ

∣∣∣∣
z∗

= 0, s.t. 0 = z4∗ −
(
Ad

Ed

⎡
z2∗ −

(
Ad

Ed

⎡
. (5.2.21)

Recall that because we are looking at the regime where kinetic fluctuations occur in
the system near equilibrium the fluctuation dissipation theorem must hold. In that
case we have that x (δ) goes to zero as φ (δ). This means that in the macroscopic
limit, as δ ≤ ∗, the non-linear terms are suppressed and the resultant equations are
linear. In this case, both the induction equation and the NS equation are linear. We can
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safely ignore all the corrections proportional to φ. For that reason the exclusion of
the corrections of φ3 and higher order terms is justified within our framework.

We can make a particular choice for the dynamic exponent consistent with the
fluctuation dissipation theorem:

z (δ) = 2 − Ad x2 (δ) . (5.2.22)

While under this particular choice the viscosity and the noise covariance remain at
their initial value, the magnetic diffusivity behaves as follows:

1

μ

dμ

dδ
=
(

−Ad + Ed
z4

z2 + 1

⎡
x2 (δ) , (5.2.23)

This allows as to deduce the limiting value of μ either by a direct computation:

ln

(
μ (δ)

μ (δ0)

⎡
=

δ⎪

δ0

⎤
−Ad + Ed

z4
(
δ⇒)

z2 (δ⇒) + 1

⎥
x2 (δ⇒) dδ⇒, (5.2.24)

or by noting that once we know the limit of the Prandtl number and the fact that
viscosity does not vary along the RG trajectory:

lim
δ≤∗ μ (δ) = ∂ (δ0)

z2∗
. (5.2.25)

All of the above considerations are valid for d ∞ 2. The marginal terms which are
generated under the RG transformation are suppressed and, therefore, can be safely
dropped. Note that the limiting values depend on the dimensionality of the problem
as one can see from the phase-space diagram for d = 2 and d = 3 (Fig. 5.7).

The kinetically driven model has a stable fixed point at d = 2. In this case the
effective Reynolds number decays slowly enough, namely as δ−1/2, which permits
the RG trajectory to terminate at (z∗; 0). In d = 3 the effective Reynolds number
dominates over the Prandtl number and therefore the limiting value of z (δ) strongly
depends on the initial values of these parameters (z (δ0) ; x (δ0)).

The macroscopic behavior of the kinetically driven MHD equations is described
by two linear equations:

β Pi

βt
= ∈2

⎦
γ eff+ Pi + γ eff− Qi

)
+ τi , (5.2.26)

β Qi

βt
= ∈2

⎦
γ eff− Pi + γ eff+ Qi

)
+ τi , (5.2.27)

where

γ eff± =
{

γ± (z (δ0) ; x (δ0)) for d > 2,

γ± (z∗) for d = 2.
(5.2.28)
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Fig. 5.7 The qualitative difference between d = 2 and d = 3 stems from the fact that the higher
the dimensionality of the problem the faster is the decay of x (δ) ≤ 0 as δ ≤ ∗. Despite the
fact that z admits a stable fixed point at d = 2 and d = 3, the behaviour for small x (δ) and z (δ)

in d ∞ 3 is completely dominated by the expoential character of x (δ)

The scaling properties of this model are the same as those for the original
Model A.

5.2.1.2 Magnetic Regime

We can study the properties of MHD equations when the noise enters the system
through the induction equation. Such a model would correspond to setting A = 0.
The equations governing the magnetically driven system are:

dy

dδ
= 1

2
y (2 − d) − 3

2

y3

z2 + 1
Cd , (5.2.29)

dz

dδ
= 1

2
Ad

y2

z
− 1

2

zy2

z2 + 1
Cd . (5.2.30)

Equations take a particularly simple form in d = 3 because Cd=3 = 0. In turn this
allows us to solve them exactly:

y (δ) = y (δ0) e−1/2δ, (5.2.31)

z (δ) =
⎦

z2 (δ0) + 2Ad y (δ0) e−1/2δ0 − 2Ad y (δ0) e−1/2δ
)1/2

. (5.2.32)

The behavior of the solution suggests that the effective coupling goes to zero
exponentially fast while z (δ) goes to a value which is determined by the initial
conditions. This is depicted below (Fig. 5.8):
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Fig. 5.8 RG trajectories for magnetically driven MHD equations in d = 3

From the solutions to the RG equations we observe that there exists a non-trivial
limit for z, which strongly depends on the initial conditions:

lim
δ≤∗ z (δ) =

⎦
z2 (δ0) + 2Ad y (δ0) e−1/2δ0

)1/2
. (5.2.33)

The application of the fluctuation-dissipation theorem to this model is a non-trivial
task. Recall that in previous studies we chose the dynamic exponent in such a manner
so that the theorem holds. An important consequence of the theorem was to render
the macroscopic theory linear while all of the non-linear terms could be consistently
ignored. This is necessary because otherwise we generate terms which are marginal.
Higher order analysis is problematic as there are infinitely many such terms in our
expansion. Thus, we require some other mechanism which would suppress such
terms in a consistent manner. The differential RG equations governing magnetically
forced MHD equations are:

d∂

dδ
= (z − 2) ∂ + Ad

y2

z2 ∂, (5.2.34)

dμ

dδ
= (z − 2) μ, (5.2.35)

dφ

dδ
= (η − d − 1) φ, (5.2.36)
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h v−

v v

,

Fig. 5.9 A marginal term in the NS RG calculation

d B

dδ
= (−d − z + 2τ − 2) B. (5.2.37)

By explicitly solving the equations for the reduced couplings we have obtained:

φ2 (δ) = φ2 (δ0) B (δ0)

μ3 (δ0)
μ3 (δ) B−1 (δ) e−δ. (5.2.38)

In order to drive all the marginal terms to zero we have to make a choice for the

scaling exponents such that:

z (δ) = 2, τ (δ) = z (δ) + d/2, →δ. (5.2.39)

These exponents remain constant throughout the RG trajectory and φ ≤ 0

exponentially fast. While the magnetic noise and magnetic diffusivity remain con-
stant, the kinematic viscosity, ∂, tends to a fixed point value:

lim
δ≤∗ ∂ (δ) =

⎦
∂2 (δ0) + 2Ad (δ0) φ (δ0) μ

1
2 (δ0) B

1
2 (δ0) e−1/2δ0

)1/2
. (5.2.40)

The equations governing the macroscopic behavior are linear, with the effective

coefficients determined by the above equations. For d = 2 the theory is unstable in
the sense that both the Prandtl number and the effective magnetic Reynolds number
blow up to infinity. This is a consequence of the change of sign in the coefficient,
Cd<3 < 0.

5.2.2 The Problem of Marginal Variables

Having studied both the magnetic and the kinetic regimes it would be natural to
consider the cross-over regime when both stirring forces are switched on. The prob-
lem with this regime is that it is not clear how one would incorporate the fluctuation
dissipation theorem and whether or not it would allow us to consistently suppress
terms which are otherwise marginal. In fact the problem of marginal terms is more
severe for the MHD equations. While in the turbulent NS we had to worry about a
graph such as the one depicted below (Fig. 5.9):
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Fig. 5.10 A marginal term in the NS RG calculation

In MHD we have many more such graphs (Fig. 5.10):
Since the scaling argument is the same, the MHD system has marginal terms to

all orders in φ, which makes a higher-order analysis problematic. To this end our
analysis is limited to situations when the system is near equilibrium. In what follows
we discuss possible directions in which the study of MHD turbulence can be taken.

5.2.3 Non-perturbative Methods

5.2.3.1 Galilean Symmetry

Similar to the NS equation, the Galilean transformation is a symmetry of the MHD
equations. Consider the following transformation:

x⇒ = x⇒ (x, t) , t ⇒ = t ⇒ (x, t) , (5.2.41)

such that
x⇒ = x − ct, t ⇒ = t, (5.2.42)

where c is a constant. It follows that differential operators transform as:

β

βxi
= ψi j

β

βx j
, (5.2.43)

β

βt
= −ci

β

βx ⇒
i

+ β

βt ⇒
. (5.2.44)

We have already established that the NS equation is invariant under the above
transformation given we transform the velocity field as:

v⇒
i

(
x⇒, t ⇒

) = vi
(
x⇒ + ct ⇒, t ⇒

)− ci . (5.2.45)

In addition we require the magnetic field which enters the NS equation to transform as:

b⇒
i

(
x⇒, t ⇒

) = bi
(
x⇒ + ct ⇒, t ⇒

)
. (5.2.46)
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The kinetic equation is then invariant. Given the above field and operator transfor-
mations, the coupling term in the induction equation generates a term:

∈ × (c × b) = c (∈ · b) − b (∈ · c) + (b · ∈) c − (c · ∈) b. (5.2.47)

The first term vanishes because of the incompressibility condition. The second and
the third term are zero because the differential operator acts on a constant c. The last
term survives but cancels the contribution which comes from the temporal differential
operator under the transformation:

βbi

βt
= −ci

βb⇒
k

βx ⇒
i

+ βb⇒
k

βt ⇒
. (5.2.48)

Therefore, the MHD equation are invariant under the Galilean transformation.

5.2.3.2 Ward-Takahashi Identities

The Galilean transformation is a continuous symmetry. It therefore follows that we
can consider infinitesimal transformations by treating c as an infinitesimal quantity.
As a consequence of the symmetry, the MHD action must remain invariant and
infinitesimal changes induced into the action by the transformation must vanish.

As we have stressed in the previous discussion of the Galilean transformation, it
is instructive to use Reynolds decomposition. In this case the propagator is explicitly
Galilean invariant. However it is advantageous, in the context of MHD, to work with
Elssaser variables, because the equations take a particularly symmetric form. Recall,
the MHD action is:

S [P, Q, h, n] =
⎪

dx dt

⎢
1

2

⎪
dy hi (x, t) Ai j (x − y) h j (y, t)

+ 1

2

⎪
dy ni (x, t) Ai j (x − y) n j (y, t) + 1

2

⎪
dy hi (x, t) Bi j (x − y) n j (y, t)

− ihi

(
β Pi

βt
+ φPi j

β Pj Qk

βxk
− γ+∈2 Pi − γ+∈2 Qi

⎡

− ini

(
β Qi

βt
+ φPi j

β Pk Q j

βxk
− γ+∈2 Qi − γ+∈2 Pi

⎡⎣
. (5.2.49)

Reynolds decomposition breaks down the field variable into an average and a fluc-
tuating part:

P = Pav + p, (5.2.50)

Q = Qav + q. (5.2.51)
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Thus, the generating functional takes the form:

Z
[
J, G, j, g

] =
⎪

dμ exp

⎢
−S +

⎪
dx dt (J · (Pav + p) + j · h + G · (Qav + q) + g · n)

⎣
,

(5.2.52)

where we have used a shorthand notation:

dμ = [Dp
] [
Dq
]

[Dh] [Dn] . (5.2.53)

Under the co-ordinate transformations:

x⇒ = x − ct, t ⇒ = t, (5.2.54)

all fields transform according to the rule:

F⇒
av = Fav − c, (5.2.55)

f ⇒ (x⇒, t ⇒
) = f

(
x⇒, t ⇒

)+ t ⇒ψc · ∈f
(
x⇒, t ⇒

)
. (5.2.56)

Under the Galilean transformation the generating functional for the correlation func-
tions transforms as:

Z −≤ Z + ψZ . (5.2.57)

Because it a symmetry transformation we require:

ψZ = 0. (5.2.58)

This condition translates into an integro-differential equation:

0 =
⎪

dx dt

⎢
Ji (x, t)

(
tψc · ∈ ψ

ψ Ji (x, t)
− ψci

⎡
+ Gi (x, t)

(
tψc · ∈ ψ

ψGi (x, t)
− ψci

⎡

+ ji (x, t) tψc · ∈ ψ

ψ ji (x, t)
+ gi (x, t) tψc · ∈ ψ

ψgi (x, t)

⎣
. (5.2.59)

The most convenient form to explore properties between correlation functions is
found by making a Legendre transformation, which we define below:

�
[
pcl , qcl , hcl , ncl

]
= −F

[
J, G, j, g

]+
⎪

dx dt
⎦

J · pcl + G · qcl + j · hcl + g · ncl
)
,

(5.2.60)
where the fields are defined as

ψF

ψ Ji
= pcl

i ,
ψF

ψGi
= qcl

i ,
ψF

ψ ji
= hcl

i ,
ψF

ψgi
= ncl

i . (5.2.61)
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As in the usual Legendre transform, when we re-express information in terms of
derivatives, here we re-express the theory in terms of average realizations of the field.
The equation which relates correlation function is then transformed into a statement
relating various loops:

0 =
⎪

dx dt

[
ψ�

ψpcl
i (x, t)

⎦
tψc · ∈ pcl

i (x, t) − ψci

)
+ ψ�

ψqcl
i (x, t)

⎦
tψc · ∈qcl

i (x, t) − ψci

)

+ ψ�

ψhcl
i (x, t)

tψc · ∈hcl
i (x, t) + ψ�

ψncl
i (x, t)

tψc · ∈ncl
i (x, t)

]
. (5.2.62)

By succesively taking derivatives with respect to classical fields we form an infinite
hierarchy of equations relating loop diagrams. For instance we find a relationship
which relates the propagator loop with the three-point vertex:

0 = t ⇒ψc · ∈y
ψ2�

ψhcl
n (z, t ⇒⇒) ψpcl

s (y, t ⇒)
+ t ⇒⇒ψc · ∈z

ψ2�

ψhcl
n (z, t ⇒⇒) ψpcl

s (y, t ⇒)

+ ψci

⎪
dx dt

⎤
ψ3�

ψhcl
n (z, t ⇒⇒) ψpcl

s (y, t ⇒) ψqcl
i (x, t)

+ ψ3�

ψhcl
n (z, t ⇒⇒) ψpcl

i (x, t) ψpcl
s (y, t ⇒)

⎥
.

(5.2.63)

This is a non-perturbative technique and is, therefore, valid to all orders in the per-
turbation theory. It is instructive to check the validity of this results to zero order in
the number of loops. To zero order the last term is zero, since there is no term of
this form present in the action. In addition, the above relation is more instructive in
Fourier space. First, we make use of translational invariance and approximate the
relation to zero order. This would have the form:

ψc · (t ⇒⇒ − t ⇒
)∈y�

0
hcl

n pcl
s

(
0, 0; y − z, t ⇒ − t ⇒⇒

)

= ψci

⎪
dx dt�0

hcl
n pcl

s qcl
i

(
0, 0; y − z, t ⇒ − t ⇒⇒; x − z, t − t ⇒⇒

)
(5.2.64)

By transforming the above relationship into Fourier space, we obtain:

−ki
β

βσ
�0

hcl
n pcl

s
(k, σ;−k,−σ) =�0

hcl
n pcl

s qcl
i

(0, 0; k, σ;−k,−σ). (5.2.65)

By substituting the functions explicitly the identity clearly holds.

− ki
β

βσ

⎦
iσ − iO · k + γ+k2

)
Psn = −iki Psn . (5.2.66)

This is, in fact, a rather trivial modification of the NS result. The vector O is a
constant drift field, which enters the equations as a consequence of the Reynolds
decomposition. However, as we increase the number of loops, the verification of
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the above identities becomes a non-trivial task. Consider corrections up to one loop.
Then we can write:

�1
hcl

n pcl
s qcl

i
(0, 0; k, σ;−k,−σ) = − iki Psn + �1 (k, σ), (5.2.67)

�1
hcl

n pcl
s pcl

i
(0, 0; k, σ;−k,−σ) =�2 (k, σ). (5.2.68)

It follows that �1, which is an additive correction from the 1-loop RG, does not have
to vanish, like in the NS case, and we have the following identity:

�1 (γ+, γ−, A, B) = −�2 (γ+, γ−, A, B). (5.2.69)

This is a consequence of the fact that other loop corrections enter the equations.
In our analysis, despite the fact that we have computed non-trivial corrections to the
vertex, we have focused solely on the regime where non-linear terms are irrelevant
in the macroscopic limit and therefore did not affect our analysis. It remains to be
shown that the correction to the three-point vertex, computed in our calculation, is
consistent with Ward-Takahashi identities. Such investigations can form the basis
for future studies of the problem.

5.2.4 Future Research

There are many interesting problems associated with the functional integral
formulation of stochastic differential equations such as RG analysis, non-locality
of the action and symmetry considerations which can be extended to MHD from the
existing literature on the NS equation. We will outline them in the next section to
demonstrate potential directions in which future research can be taken.

5.2.4.1 BRS Symmetry and Gauge Fixing in the Functional
Integral Formulation

Symmetry considerations are extremely useful, as they often allow us to simplify a
problem in question. As we have just seen, the Galilean transformation, for example,
provides relationships between various vertex function which could not be estab-
lished otherwise. However, there are cases when a continuous symmetry can com-
plicate matters at hand.

We first consider a simple problem in combinatorics when we wish to count a
number of non-equivalent realizations of placing n identical/indistinguishable objects
into m boxes (n ≤ m). First we count how many ways there are of placing n objects
into m boxes, this is given by:

C = m!
(m − n)! . (5.2.70)
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Since all n are identical we are in fact over-counting by a factor of n!, which is
a number of ways we can permute n objects. So we conclude that to count all
non-equivalent realizations we have to compute:

m!
n! (m − n)! . (5.2.71)

Note, we have divided through by the number of identical realization.
Now, let us look at a slightly different example: consider a 2D action in ordinary

calculus which is a function of two variables:

S = S (x, y) . (5.2.72)

Suppose the action is invariant under rotations and, therefore, is a function of r only.
We can think of the action as follows: for every r , S specifies a physical system, while
a rotation would relate two equivalent physical systems. Since we are interested in
counting all non-equivalent physical states, in this case we are again over-counting.
In the context of statistical mechanics, we would be looking at an expression of
the form:

Z =
⎪

dx dy e−S(x,y). (5.2.73)

Due to the rotational symmetry of the action we can write:

Z =
2λ⎪

0

dθ

∗⎪

0

rdr e−S(r). (5.2.74)

To count all non-equivalent realization we have to factor out 2λ , which can be thought
of as the volume of the symmetry group. Thus, we have:

Znon−equiv = (2λ)−1 Z . (5.2.75)

Dividing through by either a number of equivalent realizations or a volume of the
symmetry group works as long as this quantities are finite. This method fails if we
are to consider problems with translational invariance or Galilean invariance, for that
matter, since the volume of these symmetry groups is infinite.

The method which does not have an explicit division by the symmetry group
volume requires us to introduce the formalism of Grassmann variables [8]. It is
appropriate to introduce this formalism here with a number of results because it will
form the basis for other discussions in the next sections.

Grassmann algebra. A Grassmann algebra A is an algebra constructed from a
set of generators θi and their anti-commuting products:

θiθ j + θ jθi = 0 → i, j. (5.2.76)
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The consequence of the anti-commuting property of Grassmann variables is that an
arbitrary analytic function defined on this algebra is a first degree polynomial in each
element. For example:

f
(
θi , θ j

) = a0 + a1θi + a2θ j + a3θiθ j . (5.2.77)

Differentiation is defined in the same way as for complex variables, with the exception
that the order of differentiation matters. Using the general function defined above
we observe:

β2 f

βθiβθ j
= − β2 f

βθ jβθi
. (5.2.78)

While differentiation is analogous to the definition with ordinary variables, integra-
tion over Grassmann variables does not correspond to Riemann integrals. Instead, the
operation of integration is defined so that it resembles the fundamental property of
an ordinary integral over the exact differentials of functions which vanish at infinity.
As a consequence we have: ⎪

dθ = 0, (5.2.79)

because 1 is an exact differential of θ . Further, one defines:

⎪
θdθ = 1. (5.2.80)

Since θ is not a derivative of 1/2θ2 in Grasmann algebra, the usual notion of exact
differentials fails. Instead, the integration can be viewed as a linear mapping onto
the positive real numbers. This definition is made precise by following the standard
convention.

The above results are now sufficient to appreciate some of the more complicated
computations. For our purposes we are interested in Gaussian integrals defined on
the Grassmann algebra A . It is instructive to appreciate how to change variables in
Grassmann integrals. Consider:

⎪
dθ f (θ) =

⎪
dθ (a0 + a1θ) . (5.2.81)

Let us perform a change of variables:

θ = b0 + b1η. (5.2.82)

The value of the integral remains unchanged, however a Jacobian of the
transformation must be introduced:

⎪
dθ f (θ) ≤ b−1

1

⎪
dη f (b0 + b1η) = a1. (5.2.83)
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The result is very different from ordinary calculus where the Jacobain determinant
would have been b1.

Let us go back to the problem of degenerate states. In the context of the randomly
stirred NS equation, the first realization of the problem caused by the Galilean trans-
formation is due to [10]. Here, we would like to go through the points made in this
chapter and propose further investigation of the matter in the context of MHD.

Galilean transformation is a continuous symmetry which relates velocity fields
when viewed from different frames of reference. The functional integral

Z =
⎪

D [V]D [σ ] exp (−S [V, σ ]) , (5.2.84)

where the action is defined as:

S [V, σ ] =
⎪

dx
⎪

dt

[
1

2

⎪
dyσi (x, t) Di j (x − y) σ j (y, t)

− iσk

⎤
βVk

βt
+ φ0 Pkj (∈)

β
(
Vi Vj

)
βxi

− ∂0∈2Vk

⎥]
, (5.2.85)

is invariant under such transformation and, therefore, over counts physical states
by an infinite factor. This is similar to over-counting of the orbits in our previous
example, however, here this over-counting is not finite and cannot be factored in a
simple manner. As a result one seeks first to choose a representative of the physical
state by fixing an inertial frame. Formally this is referred to as fixing the gauge. For
instance one can choose to fix the drift term, which in Fourier space would correspond
to the zero mode component of the velocity field:

Z =
⎪

D [V]D [σ ] ψ [V0 − b] exp (−S [V, σ ]) , (5.2.86)

This can be formally re-written as follows:

Z ⇒ =
⎪

D [V]D [σ ]
⎪

dbψ [V0 − b] exp

(
−S [V, σ ] − b · b

2τ

⎡
. (5.2.87)

Both choices are equivalent. We have suppressed all field independent prefactors, but
motivated by our previous discussion on Jacobian determinants in ordinary calculus,
in the limit of τ ≤ 0, one indeed recovers the ψ-function. Thus, we end up with the
expression:

Z =
⎪

D [V]D [σ ] exp

(
−S [V, σ ] − V0 · V0

2τ

⎡
. (5.2.88)

This can also be viewed as follows, instead of giving a sharp cut-off in the form
of the ψ-function, we assign a Gaussian weight to different inertial frames, which
is a lot smoother. Such tricks also take place in a slightly different context [11], to
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which we will come back. To this end we have fixed the gauge, however the Galilean
transformation is explicitly broken by the last term. There exists a mathematical
construct which allows to identify another symmetry of the system, which is not
physical. Consider multiplying the generating functional by some field independent
factor:

Z =
⎪

D [V]D [σ ]
⎪

dθd θ̄ exp

(
−S [V, σ ] − V0 · V0

2τ
+ i θ̄ · θ

⎡
,(5.2.89)

where θ is a Grassmann vector and θ̄ is a complex conjugate. This may seem like an
ad hoc step, however, the rational behind it is to bring the determinant, which in our
case is 1, into the action. For if we have made a more complicated choice to fix the
gauge, we would have inserted a factor of unity of the form:

≤ det

(
ψFi (x)

ψVj (y)

⎡
ψ [F [V]] . (5.2.90)

This is where the Grassmann variables become very handy. We have seen that the
change of variables in Grassmann integrals is different to ordinary integration rules,
in particular the multi-dimensional Gaussian integral then reads:

I (a) =
⎪

dθ1d θ̄1 . . . dθnd θ̄n exp


∑

i, j

θ̄i ai jθ j


⎛

= det a. (5.2.91)

Introduction of Grassmann fields simply lifts the Jacobian of the transformation into
the action. Finally, the resultant action:

S̃ = S [V, σ ] + V0 · V0

2τ
− i θ̄ · θ, (5.2.92)

posses a new symmetry:

V⇒
0 = V0 − cζ

(
θ̄ + θ

)
, (5.2.93)

θ ⇒ = θ − i

τ
V0cζ, (5.2.94)

θ̄ ⇒ = θ̄ + i

τ
V0cζ, (5.2.95)

while the non-zero modes of the remaining fields transform as before, with the
boost velocity substituted c ≤ cζ

(
θ̄ + θ

)
, where c is a constant with dimensions

of velocity. This new symmetry is a mathematical artifact, rather than physically
meaningful symmetry, so the problem of degenerate physical states does not arise.
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Further, one can exploit the newly defined symmetry, known as Becchi-Rouet-Stora
(BRS) symmetry [12], to derive Ward-Takahashi identities.

Such considerations clearly can be extended to the MHD equations. It is necessary
for a well-defined functional integral formulation of the problem. The relations,
which result from symmetry considerations, are analogous to the Slavnov-Taylor
identities in QFT [10] and to our knowledge, to date, no such calculations have been
carried out for the randomly stirred MHD.

5.2.4.2 Further Extensions

Similar symmetry application can be applied to a number of other field transforma-
tions. For instance, the condition of incompressibility can also be treated by using the
same formalism of Grassmann variables [11]. Recall, we have implemented this con-
dition through the functional Fourier transform of the ψ-function, while one could,
using ideas we have talked through in the previous section, treat it through Grass-
mann variables. As we have mentioned such methods have an advantage over the
strict definition of the ψ-function, as one has a free parameter which, when non-
zero, suppresses fluctuations from the strict incompressibility condition by Gaussian
weight. This is analytically better behaved and one chooses such approach when
attempts to solve problems numerically.

It would be interesting to use Grassmann fields, known as ghosts [8], in the context
of MHD determinant. Direct computation of the functional determinant should be
completely equivalent. The former however presents the problem through Feynman
diagram and it would be useful to carry out such computations for completeness.

Another important point, which should be kept in mind in order to investigate the
MHD system numerically, is the non-local nature of some of the terms in the action
[11]. These terms are proportional to ∈−2, which in Fourier space are proportional
to k−2. The cost of re-writing such terms in terms of local interaction comes at the
cost of an introduction of new fields. The basic idea is as follows. Consider the term
of the form:

eK∈−2 L . (5.2.96)

One can insert a field independent factor into the action:

I =
⎪

[Dψ] e− ⎧ ψ(x1,t1)∈2ψ(x2,t2)dx1dx2dt1dt2 . (5.2.97)

where ψ is a non-physical, auxiliary field. Then, through an introduction of the
following transformation:

ψ̂ := ψ + φ−1∈−2 K + φ

2
∈−2 L , (5.2.98)

the action is transformed into the following form:
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K∈−2 L − ψ̂∈2ψ̂ ∝ −φ−2 K∈−2 K − 1

4
φ2L∈−2 L + local terms. (5.2.99)

The remaining two terms are still non-local but they can be transformed in a similar
manner, via introduction of other auxiliary fields. In effect this is like doing a Gaussian
integral with a source backwards.

Such manipulations are important if one uses Wegner-Houghton integro-
differential equation to carry out RG analysis for example [11, 13]. Since it
cannot be evaluated exactly, schemes like a derivative expansion can be implemented
to compute lowest order corrections. We note that we are not aware of any attempts to
study randomly forced MHD equations via integro-differential RG equations. As we
have seen in our study of the Coulomb gas, integro-differential RG equations, which
depict infinitesimal change in the action, as a result of the RG, in a form of a differ-
ential equation can offer a simpler analysis. For instance, the irreducible differential
formulation of Wilson RG, has fewer graphs. All of the disconnected and reducible
Feynman diagrams are not present in the formalism. This can be advantageous for
the study of turbulence because this means reducible diagrams, will not be generated
at all. The flow of the action at the intermediate stages of the RG should be smooth
and the presence of marginal terms would be manifested by the initial discontinuity
of the flow i.e. at δ = 0.

Application of Wegner-Houghton formalism has been carried for the
Navier-Stokes turbulence [11]. As a result the above transformation into local inter-
actions were carried out to implement a derivative expansion. Such calculations are
very cumbersome as the number of graphs is very large. In particular, the effect of the
discussed transformation increases the the order of the derivatives acting on the phys-
ical fields, as a result the derivative expansion has to be carried out to higher order. The
authors report that they have implemented computer algorithms to correctly account
for all possible diagrams. Unlike the irreducible differential formulation of Wilson
RG, Wegner-Houghton equation generates both reducible and irreducible graphs,
which makes it a difficult method to implement to models such as turbulence.

We have not been able to track the treatment of marginal terms. However, regard-
less of that, it is apparent that similar analysis of the MHD equations is very cumber-
some. In that sense the irreducible differential formulation of Wilson RG should be
the method of choice as it offers computational advantages. We are not aware of any
calculations of that sort for the MHD and it would be an interesting to investigate
this matter further.
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Chapter 6
Conclusion

6.1 Coulomb Gas

In the context of equilibrium statistical mechanics we have successfully applied
an irreducible RG method to the d-dimensional Coulomb gas. The lattice model
serves as a convenient starting point for the functional integral formulation of the
problem. By studying the properties of differential RG equations we have established,
in accordance with previous literature, that in d = 2 the system undergoes the
celebrated Kosterlitz-Thouless phase transition. While for dimensions d ≥ 3, there
are no physically acceptable fixed points the RG equations can be used to investigate
properties of other physical quantities, such as the Debye length. In particular, by
drawing analogies with PIC simulations and the underlying lattice model, RG method
provides a quantitative tool to study the effects of lattice’s linear scales, such as
lattice spacing and the system size, on the physical quantities. As an example we
have considered the behavior of the Debye length under RG, where such linear scales
are incorporated into the differential equation. Eventually one requires an explicit
algorithm which would closely resemble the lattice structure formulation in order to
be able to make more quantitative predictions which could be directly checked via
simulation. This could be a subject for further investigations.

6.2 Randomly Stirred Fluids

Our investigation of non-equilibrium charged systems led us to stochastic partial
differential equations which govern extraterrestrial plasmas, the MHD equations. In
order to facilitate the RG group analysis we have chosen to work in the functional
integral formulation. This introduced a new feature, which was absent in the Coulomb
gas problem, namely the Jacobian determinant. Our analysis has shown that by
exponentiating the Jacobian determinant and considering term by term in the resultant
expansion, the resultant contribution is a field independent constant and therefore can
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be dropped. Alternatively, one could use Grassmann fields to analyze the determinant.
To our knowledge such considerations have not been treated in the MHD literature
and could serve as an interesting problem for future investigations.

We have analyzed MHD equations using symmetric variables which aided our
diagrammatic analysis. Through coarse-graining we have generated a number of
connected reducible diagrams, which were found to be marginal in the RG sense
unless the scaling exponents are chosen in accordance with the fluctuation dissipation
theorem. In fact we have shown that for MHD equations there are infinitely many such
diagrams at the tree level. In practice this means that we cannot asses the behavior of
such terms in the macroscopic limit, as they could either grow, decay or stay finite.
This has a destructive effect on the RG analysis in general. In the case of a neutral
fluid, we have looked at a particular regime, when velocity fluctuations are subject to
thermal fluctuations. Such a system is in equilibrium and, as such, obeys equilibrium
thermodynamics. By means of the fluctuation dissipation theorem which must hold,
we have chosen the scaling exponents along the RG trajectory in such a way that
the non-linear coupling is zero at a fixed point. As a result all non-linear effects are
driven to zero. By considering various extensions of to Navier-Stokes, namely, MHD
with kinetic and magnetic driving separately, we have limited our analysis to terms
up to λ2. The tree level terms are treated in a similar manner, by making a particular
choice for the scaling exponents along the RG trajectory all non-linear effects can
be driven to zero in the macroscopic limit. This justifies our choice of working with
equation up to λ2 only. Such choices for scaling exponents may seem artificial, and
the question is whether or not physical systems resemble the linear behavior we
predict perhaps can be best answered through numerical simulations. In any case,
we are primarily concerned with the controlling tree level diagrams in our expansion
and our treatment, at the very least, allows us to systematically avoid them.

Although, within our framework terms of order λ3 are irrelevant, we believe that
there is still a lot of worth studying. For one thing, we have shown that the loop
correction to the three-point vertex introduces a new structure. The kinetic equation
is renormalized while the induction equation is not. This is in partial agreement with
[1], and disagrees with other calculations [2, 3]. A consistent methodology for self
checks at this order would be the use of Ward-Takahashi identities, which provide
relations between various three-point vertices. We have derived a particular example
of that in the previous chapter, but in order to check the consistency of the third order
results a more thorough study is needed. To our knowledge no such investigations
has been done.

In any case, the problem of the reducible diagrams limits the scale of applica-
tions of our RG equations. Any alternative mechanism imposed on the couplings to
suppress such terms would almost inevitably lead to a linear theory. The problem is
ultimately linked to the fact that we work with reducible diagrams, which not only
increase the complexity but, as in our case, represent problematic terms. Perhaps an
alternative formulation, using irreducible representation, would solve the problem.
There are no such calculations to date and this would most certainly be an interesting
problem to look at. Alternatively, it would be interesting to apply the RG method
which is often employed in QFT. The limitation of the method is that it does not
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predict phase-flows across the whole phase-space, but on the other hand it is a well
established strict algorithm.

The application of RG techniques to turbulence remains an interesting field of
research. Even though there are reports and papers which recover the Kolmogorov
spectrum in fluid turbulence [4, 5] in one form or another, there is still no general
consensus on the matter.
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Appendix A
Integral Identities

A.1 Standard Integrals

A.1.1 Multi-Dimensional Surface Integrals

Throughout our calculation of the loop integrals we come across a number of surface
integrals which, due to their frequent occurrence, is useful to list. Consider a d-
dimensional integral:

I =
∫

ddx. (A.1.1)

We can split it into a radial part and a surface integral over a sphere:

∫
ddx =

R∫

0

rd−1dr
∫

d�, (A.1.2)

where

∫
d� =

∂∫

0

sind−2 (α1) sind−3 (α2) . . . sin (αd−2) dα1dα2dαd−2

2∂∫

0

dαd−1.

(A.1.3)
Throughout, we will denote the surface integral as follows:

∫
d� = Sd , (A.1.4)
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where Sd is a surface of the d-dimensional unit sphere. Then, we can write the
following two identities:

∫
d�

qi q j

q2 = δi j
Sd

d
, (A.1.5)

∫
d�

qi q j qkqm

q4 = (
δi jδkm + δikδ jm + δimδ jk

) Sd

d (d + 2)
. (A.1.6)

A.1.2 Contour Integrals

The frequency integrals in the loop corrections are usually calculated by the residue
method. Here we state the key integrals used through out the calculation:

1

2∂ i

→∫

−→
dz

1

(z − ia)
(
z2 + b2

) = 1

2b (a + b)
, (A.1.7)

1

2∂ i

→∫

−→
dz

1

(z − ia)
(
z2 + b2

)2 = 2b + a

4b3 (b + a)2 , (A.1.8)

1

2∂

→∫

−→
dz

1(
z2 + a2

) (
z2 + b2

) = 1

2ab (a + b)
. (A.1.9)

Throughout we assume that a > 0 and b > 0.

A.1.3 Heaviside Step Function and Symmetrization of Loop
Integrals

Through out the calculation we come across the following integral:

I =
∫

>

dq

(2∂)d
q−y−4 qi q j qk

q2 . (A.1.10)

The domain of integration is restricted such that:

φe−r < q < φ, (A.1.11)
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and
φe−r < |k − q| < φ. (A.1.12)

Using the second inequality, we can write the restriction in domain of integration to
any order in k:

|k − q| ∞ q − cos ξ k + . . . (A.1.13)

Thus to first order in k our inequalities are more restrictive:

φe−r + cos ξ k < q < φ, cos ξ > 0, (A.1.14)

φe−r < q < φ + cos ξ k, cos ξ < 0. (A.1.15)

The volume integral is then split according to the above inequalities;

∫

>

dq =
φ∫

φe−r

dq
∫

d� −
φe−r +cos ξ k∫

φe−r

∫
d�+ −

φ∫

φ+cos ξ k

∫
d�−. (A.1.16)

The contribution to the integral I comes from the split domain d�±. This is one way
of doing the above integral. The result in the literature [1] we quote:

I = − 1

2d (d + 2)

Sd

(2∂)d
φ−ε

(
eεr − 1

) (
kiδ jk + k jδik + kkδi j

)
. (A.1.17)

An alternative way of calculating I is to insert the step functions explicitly to restrict
the domain of integration [2]:

I =
∫

dq

(2∂)d
q−y−4 qi q j qk

q2 τ+ (q) τ+ (|k − q|) , (A.1.18)

where we identify

τ+ (q) = τ
(
q − φe−r ) τ (φ − q) =

⎧⎪⎨
⎪⎩

1 φe−r < q < φ,

1/2 φe−r = q,

0 otherwise.

(A.1.19)

We then simply expand the step function in powers of k:

τ+ (|k − q|) = τ+ (q) + k · q
q

{
δ (φ − q) τ

(
q − φe−r ) − δ

(
q − φe−r )

τ (φ − q)
} + . . .

(A.1.20)
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We substitute the above into the volume integral:

I =
∫

qd−4−ydq
∫

d�

(2∂)d

qi q j qk

q3

[
τ+ (q) τ+ (q)

+ τ+ (q)
k · q

q

{
δ (φ − q) τ

(
q − φe−r ) − δ

(
q − φe−r ) τ (φ − q)

}]
.

(A.1.21)

The first term vanishes. The second terms gives:

I =pm

∫
qd−4−ydq

∫
d�

(2∂)d

qi q j qkqm

q4 τ+ (q) δ (φ − q) τ
(
q − φe−r )

− pm

∫
qd−4−ydq

∫
d�

(2∂)d

qi q j qkqm

q4 τ+ (q) δ
(
q − φe−r ) τ (φ − q)

=pmφd−4−y
∫

d�

(2∂)d

qi q j qkqm

q4 τ+ (φ) τ
(
φ − φe−r )

− pm
(
φe−r )d−4−y

∫
d�

(2∂)d

qi q j qkqm

q4 τ+ (
φe−r ) τ

(
φ − φe−r )

=pm
φd−4−y − (

φe−r
)d−4−y

2

∫
d�

(2∂)d

qi q j qkqm

q4 . (A.1.22)

The last integral is a well known identity []:

∫
d�

(2∂)d

qi q j qkqm

q4 =
(
δi jδkm + δikδ jm + δimδ jk

)
d (d + 2)

Sd

(2∂)d
. (A.1.23)

Hence, we end up with the result:

I = φd−4−y − (
φe−r

)d−4−y

2d (d + 2)

Sd

(2∂)d

(
pkδi j + p jδ jm + piδ jk

)
. (A.1.24)

Using the notation in the literature:

I = − (eεr − 1) φ−ε

2d (d + 2)

Sd

(2∂)d

(
pkδi j + p jδ jm + piδ jk

)
, (A.1.25)

where ε = 4 + y − d. Although Camargo and Tasso did not manage to prove the
above result for an arbitrary dimension [1] the above method clearly provides an
advantage, since we work in arbitrary d from the outset.

Another advantage of keeping track of the step functions explicitly is when one
tries to symmetrize the momentum distribution in the loop. Consider the second order
graph, under a transformation:
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q → q + 1

2
k, (A.1.26)

then:

h<l i

k

p−q

q

m

t h<s −→ h<l i

k

1
2 p−q

1
2 p q

m

t h<s

(A.1.27)
Under such a transformation of the integration variable the domain of integration is
restricted to:

τ+ (|q|) τ+ (|k − q|) → τ+
(∣∣∣∣q + 1

2
k

∣∣∣∣
)

τ+
(∣∣∣∣q − 1

2
k

∣∣∣∣
)

. (A.1.28)

As a result there is no first order correction in k since upon a Taylor expansion it
vanishes. Therefore there is no correction to integrals of the form:

∫
d�

(2∂)d

qi q j qk

q3 , (A.1.29)

so they can be safely ignored. However, it is important to keep in mind that this
follows only once the transformation q → q + 1

2 k has been used, otherwise the
above integral does contribute. This point has been more thoroughly explored in the
context of Navier-Stokes RG [2] calculation but can be clearly an issue in MHD
calculation as well.

The point on symmetrization of the loop integrals has been a source of numerous
errors [3, 4] in the loop corrections of the Navier-Stokes equation. Since, the appli-
cation of the Wilson-Kadanoff RG to MHD has provided inconsistent results in the
past, we believe it is necessary to re-enforce the above strategy for clarity.
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B.1 Noise Corrections

A typical graph, which contributes to noise corrections proportional to A + B is
computed from terms of the form:

h<l
p1 i,>

p2

k,>

p3

h<l
p1 i,>

p2

k,>

p3
>

h<l i

k

p−q

q

m
t h

<
s h<l i

k

−
p−q

q

− t

mh<s

(B.1.1)
We have only included the connected diagrams. In the cumulant expansion all

the disconnected diagrams are canceled. The expression on the RHS can be written
mathematically as:

λ2
∫

<

dpR<
lik (−p) R<

stm (p) h<
l (p) h<

s (−p) L (p) , (B.1.2)

where L (p) is the loop correction. The above contribution is of order p2, so we are
only interested in the zero order contribution from the loop integral. After taking the
limits p,� → 0, we obtain:

L =
∫

>

dq

(2∂)d+1

(
G+

i t (−q) G+
km (q) + G−

im (−q) G−
kt (q)

)

=4
∫

>

dq

(2∂)d
Pi t (−q) Pkm (q)

→∫

−→

dβ

2∂
|q|−2y

(
A

β2 + σ2q4 + B

β2 + μ2q4

)2

+ 4
∫

>

dq

(2∂)d
Pim (−q) Pkt (q)

→∫

−→

dβ

2∂
|q|−2y

(
A

β2 + σ2q4 − B

β2 + μ2q4

)2

.

(B.1.3)

E. Barkhudarov, Renormalization Group Analysis of Equilibrium 131
and Non-equilibrium Charged Systems, Springer Theses,
DOI: 10.1007/978-3-319-06154-2, © Springer International Publishing Switzerland 2014



132 Appendix B: Second Order Loop Integrals

The integral over the frequency domain is performed by standard methods of contour
integration. We can define the following contribution from the frequency integration:

A± =
(

A2

σ3 + B2

μ3 ± 2AB

σμ (σ + μ)

)
. (B.1.4)

Thus, we have:

L = A+
∫

>

dq

(2∂)d
|q|−2y−6 Pi t (−q) Pkm (q)

+ A−
∫

>

dq

(2∂)d
|q|−2y−6 Pim (−q) Pkt (q) . (B.1.5)

Next, we make use of the definition of the projector operators to write them down
explicitly:

Pi t (−q) Pkm (q) = δi tδkm − δi t
qkqm

q2 − δkm
qi qt

q2 + qi qt qkqm

q4 , (B.1.6)

Pim (−q) Pkt (q) = δimδkt − δim
qkqt

q2 − δkt
qi qm

q2 + qi qt qkqm

q4 . (B.1.7)

This leads to the expression:

L =
∫

>

dq

(2∂)d
q−2y−6

[
A+

(
δi tδkm − δi t

qkqm

q2 − δkm
qi qt

q2 + qi qt qkqm

q4

)

+ A−
(

δimδkt − δim
qkqt

q2 − δkt
qi qm

q2 + qi qt qkqm

q4

)]
. (B.1.8)

By making use of standard identities in Appendix A.1, the above expression can be
integrated over fast Fourier modes to give:

L = δi tδkm

[
A+

d2 − 3

d (d + 2)
+ A−

1

d (d + 2)

]
Sd

(2∂)d

φε̃

ε̃

(
1 − b−ε̃

)
, (B.1.9)

ε̃ = d − 2y − 6. (B.1.10)

By substituting this result to the original expression we obtain our final contribution:

→ −1

2
λ2L

∫

<

dpp2Pls (p) h<
l (p) h<

s (−p) . (B.1.11)



Appendix B: Second Order Loop Integrals 133

The factor of a half comes as a result of the cumulant expansion. Since it is a second
order term, it has such a prefactor. In the above form is how this term appears as a
new contribution to the action.

Further, we must to calculate cross-correlations between conjugate fields. First,
corrections of such form appear at the second order in λ. The diagrammatic repre-
sentation of a typical term is:

h<l
p1 i,>

p2

k,>

p3

n<l
p1 i,>

p2

k,>

p3
>

h<l i

k

p−q

q

m
t n

<
s h<l i

k

−
p−q

q

− t

m n<s

It is clear that the loop contribution is identical to the one we have already calcu-
lated with the only difference that we have interchanged A+ ≤ A− . Thus, we can
immediately write the contribution as:

− λ2 L̃
∫

<

dpp2Pls (p) h<
l (p) n<

s (−p) , (B.1.12)

where

L̃ = δi tδkm

[
A−

d2 − 3

d (d + 2)
+ A+

1

d (d + 2)

]
Sd

(2∂)d

φε̃

ε̃

(
1 − b−ε̃

)
(B.1.13)

Note, there is an additional factor of 2, which cancels the half. This is a consequence
of the fact that at the second order in λ all of the non-identical terms pick up a factor
of 2 from the quadratic expansion.

The terms which have been generated as a result of coarse graining are proportional
to p2, where, the original part of the action which contains the noise matrix is
proportional to p−y . Unless we set y = −2, we cannot write the above contribution
as a correction to the noise amplitude in closed form. We can interpret the appearance
of this new term within the RG framework naturally as a new interaction which
appear upon coarse-graining. We have started with a theory which had this particular
interaction switched off and then generated it upon coarse-graining. Accordingly, if
we were to include this interaction from the outset we would be able to write down
a closed form expression for the correction to the noise amplitude. At the same time
we could identify a boundary condition for this new term such that it is zero before
we coarse-grain the system and thereby formally retain the problem as it is originally
formulated.

Hence, we proceed by a redefinition of the noise amplitude:

Ak−y → A (k) =
(

A0 + k2+y A2

)
k−y, (B.1.14)
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Bk−y → B (k) =
(

B0 + k2+y B2

)
k−y . (B.1.15)

Upon this substitution the loop integral is:

L =
∫

>

dq

(2∂)d
A+ (|q|) |q|−2y−6 Pi t (−q) Pkm (q)

+
∫

>

dq

(2∂)d
A− (|q|) |q|−2y−6 Pim (−q) Pkt (q) . (B.1.16)

Such integral would not change any angular integrations. In fact, upon a Taylor
expansion of the integral in radial direction around φ we obtain:

L = δi tδkm

[
A+ (φ)

d2 − 3

d (d + 2)
+ A− (φ)

1

d (d + 2)

]
Sd

(2∂)d
φε̃δη, (B.1.17)

and, for the cross correlation, we can write:

L̃ = δi tδkm

[
A− (φ)

d2 − 3

d (d + 2)
+ A+ (φ)

1

d (d + 2)

]
Sd

(2∂)d
φε̃δη, (B.1.18)

where we have defined:

A± (φ) =
(

A0 + φ2+y A2
)2

σ3 +
(
B0 + φ2+y B2

)2

μ3

±2
(

A0 + φ2+y A2
) (

B0 + φ2+y B2
)

σμ (σ + μ)
. (B.1.19)

We have made use of the following definition:

b = eδη ∞ 1 + δη + . . . . (B.1.20)

Having re-defined the noise we have generated a closed-form corrections to the noise
amplitudes.

B.2 Corrections to γ+

Corrections to the coefficient ξ+ is given by the following contributions:
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Γ1 = k i

l

+

p−q

q

+ m

t h<s + k i

l

−
p−q

q

− t

m h<s

(B.2.1)

Γ2 =
h<l k

i

−
p−q

q

+ s

m t +
h<l i

k

+

p−q

q

− s

m t

(B.2.2)

The first contribution reads:

ψ1 = −i
∫

dpRstm (−p) hs (p) Pk (−p) ξ1 (p,� → 0) , (B.2.3)

where the loop correction is:

ξ1 =
∫

>

dqRlik (−q)
[
G+

i t (p − q) C+
lm (q) + G−

im (p − q) C−
lt (q)

]

=
∫

>

dqRlik (−q) Pim (p − q) g (p − q) δlt

(
1

iβ + σq2 − 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 − B (p − q)

β2 + μ2 (p − q)4

)

+
∫

>

dqRlik (−q) Pi t (p − q) g (p − q) δlm

(
1

iβ + σq2 + 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 + B (p − q)

β2 + μ2 (p − q)4

)
. (B.2.4)

The correction to the coefficient is of the order p2, thus we seek to expand the above
expression in orders of p to extract the leading order contribution from the coarse-
graining. We come across a frequency integral which is evaluated using the method
of residues:

→∫

−→

dβ

2∂

1(
iβ + μq2

) (
β2 + σ2 (p − q)4)

= 1

q4

(
1

2σ (σ + μ)
+ 2σ + μ

σ (σ + μ)2

(
p · q
q2

))
+ . . . . (B.2.5)
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After algebraic manipulations the contribution from ξ1 can be compactly written
using the following notation:

B± = 1

4

(
A

σ2 + B

μ2

)
± 1

2 (σ + μ)

(
A

σ
+ B

μ

)
, (B.2.6)

C± = A

(
3

4σ2 ± 2σ + μ

σ (σ + μ)2

)
+ B

(
3

4μ2 ± 2μ + σ

μ (σ + μ)2

)
. (B.2.7)

Then:

ξ1 =
∫

>

dq

(2∂)d

[
Rlik (−q) Pim (p − q) g (p − q) δlt q

−4
(
B− + C−

(
p · q
q2

))

+ Rlik (−q) Pi t (p − q) g (p − q) δlmq−4
(
B+ + C+

(
p · q
q2

))]
. (B.2.8)

Note that the coefficients B± and C± also carry momentum dependence through
A (p − q) and B (p − q). We have omitted this dependence for compactness. We
proceed by expanding the projector operator and the function g in powers of p. The
projector operator can be written to first order as:

Pim (p − q) = Pim (q) + Omi (p, q) + . . . (B.2.9)

The second term is of order p, explicitly it has the form:

Omi (p, q) = 1

q2

(
pi qm + qi pm − qi qm2

p · q
q2

)
, (B.2.10)

and

g (|p − q|) = q−y
(

1 + y
p · q
q2 + . . .

)
. (B.2.11)

It follows that:

Rtik (−q) Pim (p − q) g (p − q) = q−y
(

−p j
qt qkqmq j

q4

)
+ · · · (B.2.12)

The above expression follows from properties of the projector operator and the fact
that we have solenoidal fields. A similar analysis leads to an analogous contribution
in the second term:

Rmik (−q) Pi t (p − q) g (p − q)

= q−y
(

pt
qmqk

q2 − δmk pt − p j
qmqkqt q j

q4 + δmk p j
qt q j

q2

)
. (B.2.13)
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An important fact about the above expansions is that they are of order p and hence
we do not need to go beyond the zero-order expansion of the other terms. The
contribution from the graphs then reads:

ξ1 =
∫

>

dq

(2∂)d
q−4−y

[(
pt

qmqk

q2 − δmk pt − p j
qmqkqt q j

q4 + δmk p j
qt q j

q2

)

B+ (q) − p j
qt qkqmq j

q4 B− (q)

]
. (B.2.14)

The surface integrals are evaluated by means of identities we have identified earlier.
After some algebra we obtain:

ξ1 = δmk pt

[
B+ (φ)

3 − d2

d (d + 2)
− B− (φ)

1

d (d + 2)

]
Sd

(2∂)d
φεδη, (B.2.15)

ε = d − 4 − y. (B.2.16)

The second correction to the coefficient ξ+ is:

ψ2 = −i
∫

dpRstm (−p) hs (p) Pi (−p) ξ2 (p,� → 0) , (B.2.17)

where the loop correction is:

ξ2 =
∫

>

dqRlik (−q) Pmk (p − q) g (p − q) δlt

(
1

iβ + σq2 + 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 − B (p − q)

β2 + μ2 (p − q)4

)

+
∫

>

dqRlik (−q) Ptk (p − q) g (p − q) δlm

(
1

iβ + σq2 − 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 + B (p − q)

β2 + μ2 (p − q)4

)
. (B.2.18)

Once again we introduce two definitions to write the frequency integrals in a compact
manner:

B̃± = 1

4

(
A

σ2 − B

μ2

)
± 1

2 (σ + μ)

(
A

σ
− B

μ

)
, (B.2.19)

C̃± = A

(
3

4σ2 ± 2σ + μ

σ (σ + μ)2

)
− B

(
3

4μ2 ± 2μ + σ

μ (σ + μ)2

)
. (B.2.20)
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It follows that the loop contribution can be written as:

ξ2 =
∫

>

dq

(2∂)d

[
Rlik (−q) Pkm (p − q) g (p − q) δlt q

−4
(
B̃+ + C̃+

(
p · q
q2

))

+ Rlik (−q) Ptk (p − q) g (p − q) δlmq−4
(
B̃− + C̃−

(
p · q
q2

))]
. (B.2.21)

We proceed by expanding the projectors:

Rlik (−q) Pkm (p − q) g (p − q) δlt

= −q−y
[

pt
qi qm

q2 − qmqt qi

q2 − (1 + y) pk
qi qkqt qm

q4

]
, (B.2.22)

and

Rlik (−q) Ptk (p − q) g (p − q) δlm = q−y
[

qmqt qi

q2 + (1 + y) pk
qi qkqt qm

q4

]
.

(B.2.23)
We substitute these results into the momentum integral:

ξ2 = −
∫

>

dq

(2∂)d
q−y−4

[(
pt

qi qm

q2 − (1 + y) pk
qi qkqt qm

q4

)
B̃+ − C̃+ pk

qi qkqt qm

q4

]

+
∫

>

dq

(2∂)d
q−y−4

[
(1 + y) pk

qi qkqt qm

q4 B̃− + C̃− pk
qi qkqt qm

q4

]

+
∫

>

dq

(2∂)d
q−y−4 qmqt qi

q2

[
B̃− + B̃+

]
. (B.2.24)

We have written the last term separately because it requires a little bit more attention.
We have to do a Taylor expansion around the momentum shells as well as expand the
coefficients B̃− and B̃−to first order on p. We have gone through how to evaluate the
above integral upon momentum shell expansion in Appendix A. So here we solely
focus on expansion of the coefficients. First, note:

B̃− + B̃+ = 1

2

(
A (p − q)

σ2 − B (p − q)

μ2

)
(B.2.25)

As we Taylor expand this expression to first order in p, we have:

B̃−+B̃+ = 1

2

(
A (q)

σ2 − B (q)

μ2

)
−(2+y)

(
A2q2+y

2σ2 − B2q2+y

2μ2

)
p · q
q2 (B.2.26)
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Now we substitute that back into our expression for the loop integral:

ξ2 = −
∫

>

dq

(2∂)d
q−y−4

[(
pt

qi qm

q2 − qmqt qi

q2 − (1 + y) pk
qi qkqt qm

q4

)

B̃+ − C̃+ pk
qi qkqt qm

q4

]

+
∫

>

dq

(2∂)d
q−y−4

[(
qmqt qi

q2 + (1 + y) pk
qi qkqt qm

q4

)

B̃− + C̃− pk
qi qkqt qm

q4

]

− (2 + y)

2

∫

>

dq

(2∂)d
q−2

(
A2

σ2 − B2

μ2

)
pk

qmqt qi qk

q4 . (B.2.27)

The coefficients B̃± and C̃± in the first two lines are evaluated to the zeroth order in
p and the first order contribution is captured by the last line. Upon integration of the
surface integrals and a Taylor expansion of the integral in radial direction the final
results read:

ξ2 =ptδim
Sd

(2∂)d
δηφε

[
− (d + 6 − y)

2d (d + 2)
B̃0+ + d − 2 + y

2d (d + 2)
B̃0− + 1

d (d + 2)

(
C̃ 0+ + C̃ 0−

)]

+ ptδim
Sd

(2∂)d
δηφd−2

[
− (d + 4 − 2y)

2d (d + 2)
B̃2+ (φ) + d + 2y

2d (d + 2)
B̃2− (φ)

+ 1

d (d + 2)

(
C̃ 2+ (φ) + C̃ 2− (φ)

)
− (2 + y)

d (d + 2)

(
B̃2+ + B̃2−

)]
. (B.2.28)

We have calculated all relevant corrections to ξ+. Note that all our graphs contributed
to corrections which are proportional to the h and P fields. An Analogous calculation
would follow for graphs whose external legs are n and Q. From the diagrammatic
construction it is clear that the corrections are identical.

B.3 Corrections to γ−

The diagrammatic representation of the terms which contribute to corrections of
ξ− is:

Φ1 = i k

l

−
p−q

q

+ m

t h<s + i k

l

+

p−q

q

− t

m h<s

(B.3.1)
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Φ2 = k i

l

+

p−q

q

+ m

t h<s + k i

l

−
p−q

q

− t

m h<s

(B.3.2)
The first two diagrams when expressed mathematically are:

χ1 = −i
∫

dpRstm (−p) hs (p) Qi (−p) α1 (p,� → 0) , (B.3.3)

where the loop correction is:

α1 =
∫

>

dqRlik (−q) Pmk (p − q) g (p − q) δlt

(
1

iβ + σq2 − 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 + B (p − q)

β2 + μ2 (p − q)4

)

+
∫

>

dqRlik (−q) Ptk (p − q) g (p − q) δlm

(
1

iβ + σq2 + 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 − B (p − q)

β2 + μ2 (p − q)4

)
. (B.3.4)

Integration over the frequency integral is the analogous to the calculation for ξ2
coefficient. The result reads:

α1 =
∫

>

dq

(2∂)d

[
Rlik (−q) Pkm (p − q) g (p − q) δlt q

−4
(
B̃− + C̃−

(
p · q
q2

))

+ Rlik (−q) Ptk (p − q) g (p − q) δlmq−4
(
B̃+ + C̃+

(
p · q
q2

))]
. (B.3.5)

Note that the projector operators have the same index dependence as in the ψ2
contribution. The only difference is that we have swapped frequency integralsB+ ≤
B− and C+ ≤ C−. Thus we can write:

α1 = −
∫

>

dq

(2∂)d
q−y−4

[(
pt

qi qm

q2 − qmqt qi

q2 − (1 + y) pk
qi qkqt qm

q4

)
B̃− − C̃− pk

qi qkqt qm

q4

]

+
∫

>

dq

(2∂)d
q−y−4

[(
qmqt qi

q2 + (1 + y) pk
qi qkqt qm

q4

)
B̃+ + C̃+ pk

qi qkqt qm

q4

]

− (2 + y)

2

∫

>

dq

(2∂)d
q−2

(
A2

σ2 − B2

μ2

)
pk

qmqt qi qk

q4 . (B.3.6)
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We can immediately state the final result:

α1 =ptδim
Sd

(2∂)d
δηφε

[
− (d + 6 − y)

2d (d + 2)
B̃0− + d − 2 + y

2d (d + 2)
B̃0+ + 1

d (d + 2)

(
C̃ 0+ + C̃ 0−

)]

+ ptδim
Sd

(2∂)d
δηφd−2

[
− (d + 4 − 2y)

2d (d + 2)
B̃2+ (φ) + d + 2y

2d (d + 2)
B̃2− (φ)

+ 1

d (d + 2)

(
C̃ 2+ (φ) + C̃ 2− (φ)

)
− (2 + y)

d (d + 2)

(
B̃2+ + B̃2−

)]
. (B.3.7)

The second contribution is χ2 has the algebraic form:

χ2 = −i
∫

dpRstm (−p) hs (p) Qk (−p) α2 (p,� → 0) , (B.3.8)

where the loop correction is:

α2 =
∫

>

dqRlik (−q) Pim (p − q) g (p − q) δlt

(
1

iβ + σq2 + 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 + B (p − q)

β2 + μ2 (p − q)4

)

+
∫

>

dqRlik (−q) Pi t (p − q) g (p − q) δlm

(
1

iβ + σq2 − 1

iβ + μq2

)

×
(

A (p − q)

β2 + σ2 (p − q)4 − B (p − q)

β2 + μ2 (p − q)4

)
. (B.3.9)

After performing the frequency integral we obtain:

α2 =
∫

>

dq

(2∂)d

[
Rlik (−q) Pim (p − q) g (p − q) δlt q

−4
(
B+ + C+

(
p · q
q2

))

+ Rlik (−q) Pi t (p − q) g (p − q) δlmq−4
(
B− + C−

(
p · q
q2

))]
.

(B.3.10)

This is exactly the same expression we have had for ξ1, only we have swapped
B+ ≤ B− and C+ ≤ C−. Hence, we obtain

α2 = δmk pt

[
B− (φ)

3 − d2

d (d + 2)
− B+ (φ)

1

d (d + 2)

]
Sd

(2∂)d
φεδη. (B.3.11)
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C.1 Corrections to λ

We begin by considering all graphs which form a correction to the vertex:

hl

p1 i

p2

k

p3

To account for all possible graphs we need to form combinations of one-loop
graphs from the following five terms:

h>l
p1 i,>

p2

k,<

p3

or

n>l
p1 k,>

p3

i,<

p2

−→
h>l
p1 i,<

p2

k,>

p3

or

n>l
p1 k,<

p3

i,>

p2

h<l
p1 i,>

p2

k,>

p3

We choose either of the two terms which come in pair and combine it with either
of the terms in the second pair. The third term is fixed, as there is only one graph
of its kind. For any given triplet of terms we choose to combine we generate eight
graphs. This number arises simply from counting all possible ways we can contract
any given triplet.
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l2 k2

i2
hl1 k1

i1 −
−
k3

l3 i3

i1 hl1

k1

i3 l3

k3

− −
i2

l2 k2

l3 i3

k3

k2 i2

l2

− −
i1

k1 hl1

l2 k2

i2
hl1 i1

k1

−
k3

l3 i3

k1 hl1

i1
i3 l3

k3
i2

l2 k2

l3 i3

k3

k2 i2

l2

−
−

k1

i1 hl1

l2 k2

i2
hl1 k1

i1
−
i3

l3 k3

i1 hl1

k1

k3 l3

i3
−
i2

l2 k2

l3 k3

i3
k2 i2

l2
−
i1

k1 hl1

l2 k2

i2
hl1 i1

k1

−
i3

l3 k3

k1 hl1

i1
k3 l3

i3

−

i2

l2 k2

l3 k3

i3
k2 i2

l2 −
k1

i1 hl1

l2 i2

k2
hl1 k1

i1

− −
i3

l3 k3

i1 hl1

k1

k3 l3

i3 −
−
k2

l2 i2

l3 k3

i3
i2 k2

l2 −
−
i1

k1 hl1

l2 i2

k2
hl1 i1

k1 −
−
i3

l3 k3

k1 hl1

i1
k3 l3

i3

−
−

k2

l2 i2

l3 k3

i3
i2 k2

l2
k1

i1 hl1

However, we would always generate two graphs which would be proportional
to the noise propagator, which is zero as can be seen by the explicit form of the
generating functional for the free theory. Thus, we are left with six graphs generated



Appendix C: Third Order Loop Integrals 145

by each triplet. All together we have twenty four graphs. Consider the first eighteen
graphs (see previous page). These diagrams all have the same property, namely, they
vanish purely because of the way the indicies are distributed in the loop integral. This
is only true in the limit of when the external momentum goes to zero. The presence
of the dashed leg in all the diagrams signifies that all of these graphs are proportional
to:

Rl1i1k1 (−p1) hl1 (p1) , (C.1.1)

which means that third order one-loop corrections are only required to the zeroth
order in the external momentum. For this reason we can simply consider the projector
operators along the loop. Consider the first loop in the list of eighteen diagrams:

l2 k2

i2
hl1 k1

i1

+

−
−
k3

l3 i3

∝ Rl2i2k2 (q) Rl3i3k3 (q)Pi2k3 (q) δi1l3δk1l2

Note that
qi2 Pi2k3 (q) = 0, (C.1.2)

so the contribution of this graph is zero. The same observation can be made explicit
about the remaining seventeen graphs.

This is a tremendous simplification. We have to deal only with six diagrams.
Consider the first graph:

�1 =
(

− 1

2

)∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2)

×
∫

dp23dq13dk̃12Rl2i2k2

(
−k̃1

)
Rl3i3k3 (−q1) |q3|−y Pk2k3 (q3) δk1l2 δi1l3

× δ (p1 + p2 + p3) δ (q1 + q2 + q3) δ
(

k̃1 + k̃2 + k̃3

)
δ
(

k̃1 + p3

)
δ
(

k̃2 + q3

)
δ (p2 + q1)

× C− (
k̃1

)
G− (q3) C− (q1) . (C.1.3)

We proceed by integrating over momentum:

�1 =
(

−1

2

) ∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2) δ

(
p1 + q2 + k̃3

)

×
∫

dq3Rl2i2k2

(
k̃3 − q3

)
Rl3i3k3

(
−p1 − k̃3 + q3

)
|q3|−y Pk2k3 (q3) δk1l2δi1l3

× C− (
−k̃3 + q3

)
G− (q3) C− (

p1 + k̃3 − q3

)
. (C.1.4)
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The last two lines form the loop correction. Note, the contribution is of order p1,
so we require a zero order correction in external momentum from the loop integral.
This simplifies to:

θ1 =
∫

dq3Rl2i2k2 (−q3) Rl3i3k3 (q3) |q3|−y Pk2k3 (q3) δk1l2δi1l3 C− (q3) G− (q3) C− (−q3) .

(C.1.5)

We can now contract the indices’s to obtain:

θ1 = −
∫

>

dq |q|−y qi2qi3 Pk1k2 (q) Pi1k3 (q) Pk2k3 (q) C− (q) G− (q) C− (−q)

= −
∫

>

dq |q|−y qi2qi3 Pk1i1 (q) C− (q) G− (q) C− (−q) . (C.1.6)

Moreover, consider the frequency integral and the momentum integral separately:

θ1 = −
∫

>

qd−1−ydq
∫

d�

(2∂)d
qi2qi3 Pk1i1 (q)

∫
dβ

2∂
C− (q) G− (q) C− (−q)

=
∫

>

qd−3−ydq
∫

d�

(2∂)d
qi2qi3qk1qi1

∫
dβ

2∂
C− (q) G− (q) C− (−q) . (C.1.7)

Finally, we need to calculate the frequency integral:

∫
dβ

2∂
C− (q) G− (q) C− (−q) =

∫
dβ

2∂

(
1

iβ + σq2 − 1

iβ + μq2

)(
1

−iβ + σq2 − 1

−iβ + μq2

)

×
(

A

β2 + σ2q4 − B

β2 + μ2q4

)
. (C.1.8)

We make use of the identities:
∫

dz

2∂

1(
z2 + σ2

)2 = 1

4σ3 , (C.1.9)

∫
dz

2∂

1(
z2 + σ2

) (
z2 + μ2

) = 1

2μσ (σ + μ)
, (C.1.10)

∫
dz

2∂

1

(z − iσ) (z + iμ)
(
z2 + σ2

) =
∫

dz

2∂

1

(z − iσ)2 (z + iμ) (z + iσ)

= 1

(μ + σ)2 (σ − μ)
− 1

4σ2 (σ − μ)
, (C.1.11)

We define the following quantity:
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Y+ =A

[
1

4σ3 + 1

2μσ (σ + μ)
− 2

(μ + σ)2 (σ − μ)
+ 1

2σ2 (σ − μ)

]

− B

[
1

4μ3 + 1

2μσ (σ + μ)
− 2

(μ + σ)2 (μ − σ)
+ 1

2μ2 (μ − σ)

]
.

(C.1.12)

Thus,

θ1 =Y+
∫

>

qd−5−ydq
∫

d�

(2∂)d

qi2qi3qk1qi1

q4

=Y+φεδη
Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
d (d + 2)

. (C.1.13)

Subsequent analysis requires us to consider the remaining 5 graphs.

�2 =
(

− 1

2

) ∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2)

×
∫

dp23dq13dk̃12Rl2i2k2

(
−k̃1

)
Rl3i3k3 (−q1) |q3|−y Pi1k3 (q3) δk1l2 δk2l3

× δ (p1 + p2 + p3) δ (q1 + q2 + q3) δ
(

k̃1 + k̃2 + k̃3

)
δ
(

k̃1 + p3

)
δ (p2 + q3) δ

(
k̃2 + q1

)

× C− (
k̃1

)
G− (q3) C− (q1) . (C.1.14)

Integrate over momentum:

θ2 =
∫

dq3Rl2i2k2

(
k̃3 + q2 + q3

)
Rl3i3k3 (q2 + q3) |q3|−y Pi1k3 (q3) δk1l2δk2l3

× δ
(

p1 + q2 + k̃3

)
C− (

−k̃3 − q2 − q3

)
G− (q3) C− (−q2 − q3) .

(C.1.15)

Taking the limit of external momentum going to zero we obtain:

θ2 =
∫

dq3Rl2i2k2 (q3) Rl3i3k3 (q3) |q3|−y Pi1k3 (q3) δk1l2δk2l3 C− (−q3) G− (q3) C− (−q3) .

(C.1.16)

This is then followed by index contraction:

θ2 = −
∫

dq
qi2qi3qi1qk1

q2
|q|−y C− (−q) G− (q) C− (−q) . (C.1.17)
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The frequency integral then reads:

∫
dβ

2∂
C− (−q) G− (q) C− (−q) =

∫
dβ

2∂

(
1

−iβ + σq2 − 1

−iβ + μq2

)

×
(

1

−iβ + σq2 − 1

−iβ + μq2

)
×

(
A

β2 + σ2q4 − B

β2 + μ2q4

)

(C.1.18)

Evaluation of each integral frequency integral can be compactly written using the
following quantity:

X = A

(
1

8σ3 − μ

2σ2 (σ + μ)2

)
− B

(
1

8μ3 − σ

2μ2 (σ + μ)2

)
. (C.1.19)

Then, we can conclude:

θ2 = −X φεδη
Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
d (d + 2)

. (C.1.20)

Next, we move onto the third contribution:

�3 =
(

− 1

2

)∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2)

×
∫

dp23dq13dk̃12Rl2i2k2

(
−k̃1

)
Rl3i3k3 (−q1) |p3|−y Pk1k2 (p3) δk3l2 δi1l3

× δ (p1 + p2 + p3) δ (q1 + q2 + q3) δ
(

k̃1 + k̃2 + k̃3

)
δ
(

p3 + k̃2

)
δ
(

k̃1 + q3

)
δ (p2 + q1)

× C− (
k̃1

)
G− (p3) C− (q1) . (C.1.21)

Integrate over the momentum:

θ3 =
∫

dq3Rl2i2k2 (q3) Rl3i3k3

(
−p1 − k̃3 + q3

) ∣∣∣k̃3 − q3

∣∣∣−y
Pk1k2

(
k̃3 − q3

)
δk3l2δi1l3

× δ
(

p1 + q2 + k̃3

)
C− (−q3) G− (

k̃3 − q3

)
C− (

p1 + k̃3 − q3

)
. (C.1.22)

Take the limit of external momentum going to zero:

θ3 =
∫

dqRl2i2k2 (q) Rl3i3k3 (q) |q|−y Pk1k2 (q) δk3l2δi1l3C− (−q) G− (−q) C− (−q) .

(C.1.23)
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We contract the indicies:

θ3 =
∫

dqqi2qi3 Pi1k1 (q) |q|−y C− (−q) G− (−q) C− (−q)

= −
∫

dq
qi2qi3qi1qk1

q2
|q|−y C− (−q) G− (−q) C− (−q) . (C.1.24)

This contribution is identical to θ2:

θ3 = −X φεδη
Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
d (d + 2)

. (C.1.25)

Consider the fourth graph:

�4 =
(

− 1

2

) ∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2)

×
∫

dp23dq13dk̃12Rl2i2k2

(
−k̃1

)
Rl3i3k3 (−q1) |p3|−y Pk1k3 (p3) δk2l3 δi1l2

× δ (p1 + p2 + p3) δ (q1 + q2 + q3) δ
(

k̃1 + k̃2 + k̃3

)
δ (p3 + q3) δ

(
k̃2 + q1

)
δ
(

p2 + k̃1

)

× G+ (p3) C− (q1) C+ (
k̃1

)
. (C.1.26)

Contract the momentum integrals:

θ4 =
∫

dq3Rl2i2k2 (q3 − p1) Rl3i3k3

(
−p1 + q3 − k̃3

)
|q3|−y Pk1k3 (q3) δk2l3δi1l2

× δ
(

p1 + k̃3 + q2

)
G+ (−q3) C− (

p1 − q3 + k̃3

)
C+ (p1 − q3) . (C.1.27)

Take the limit of external momentum going to zero:

θ4 =
∫

dqqi2qi3 Pi1k1 (q) |q|−y C− (−q) G+ (−q) C+ (−q)

= −
∫

dq
qi2qi3qi1qk1

q2
|q|−y C− (−q) G+ (−q) C+ (−q) . (C.1.28)

The frequency integral is:

∫
dβ

2∂
C− (−q) G+ (−q) C+ (−q) =

∫
dβ

2∂

(
1

−iβ + σq2 − 1

−iβ + μq2

)

×
(

1

−iβ + σq2 + 1

−iβ + μq2

)
×

(
A

β2 + σ2q4 + B

β2 + μ2q4

)
.

(C.1.29)

We define the quantity:
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U− = A

q6

(
1

8σ3 − 1

2σ (σ + μ)2

)
+ B

q6

(
1

8μ3 − 1

2μ (σ + μ)2

)
, (C.1.30)

We finally conclude:

θ4 = −U−δη
φε

d (d + 2)

Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
. (C.1.31)

Second to last contribution:

�5 =
(

− 1

2

)∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2)

×
∫

dp23dq13dk̃12Rl2i2k2

(
−k̃1

)
Rl3i3k3 (−q1) |q3|−y Pk2k3 (q3) δk1l3 δi1l2

× δ (p1 + p2 + p3) δ (q1 + q2 + q3) δ
(

k̃1 + k̃2 + k̃3

)
δ (p3 + q1) δ

(
k̃2 + q3

)
δ
(

p2 + k̃1

)

× C+ (q1) G− (q3) C+ (
k̃1

)
. (C.1.32)

Momentum integration yields:

θ5 =
∫

dq3Rl2i2k2

(
−q3 + k̃3

)
Rl3i3k3

(
−p1 + q3 − k̃3

)
|q3|−y Pk2k3 (q3) δk1l3δi1l2

× δ
(

p1 + q2 + k̃3

)
C+ (

p1 − q3 + k̃3

)
G− (q3) C+ (

q3 − k̃3

)
. (C.1.33)

Take the limit of external momentum going to zero:

θ5 = −
∫

dqqi2qi3 Pi1k1 (q) |q|−y C+ (−q) G− (q) C+ (q)

=
∫

dq
qi2qi3qi1qk1

q2
|q|−y C+ (−q) G− (q) C+ (q) . (C.1.34)

The frequency integral reads:

∫
dβ

2∂
C+ (−q) G− (q) C+ (q) =

∫
dβ

2∂

(
1

−iβ + σq2 + 1

−iβ + μq2

)

×
(

1

iβ + σq2 + 1

iβ + μq2

)
×

(
A

β2 + σ2q4 − B

β2 + μ2q4

)
.

(C.1.35)
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Lets us identify this contribution by the following notation:

Y− =A

[
1

4σ3 + 1

2μσ (σ + μ)
+ 2

(μ + σ)2 (σ − μ)
− 1

2σ2 (σ − μ)

]

− B

[
1

4μ3 + 1

2μσ (σ + μ)
+ 2

(μ + σ)2 (μ − σ)
− 1

2μ2 (μ − σ)

]
.

(C.1.36)

The whole contribution then reads:

θ5 =Y−
∫

dq
qi2qi3qi1qk1

q4
|q|−y−4

=Y−φεδη
Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
d (d + 2)

. (C.1.37)

At last we arrive at our final expression:

�6 =
(

− 1

2

)∫
dp1dq2dk̃3Rl1i1k1 (−p1) h<

l1 (p1) P<
i2

(
k̃3

)
Q<

i3
(q2)

×
∫

dp23dq13dk̃12Rl2i2k2

(
−k̃1

)
Rl3i3k3 (−q1) |p2|−y Pk2i1 (p2) δk1l3 δk3l2

× δ (p1 + p2 + p3) δ (q1 + q2 + q3) δ
(

k̃1 + k̃2 + k̃3

)
δ (p3 + q1) δ

(
q3 + k̃1

)
δ
(

k̃2 + p2

)

× C+ (q1) C− (
k̃1

)
G+ (p2) . (C.1.38)

We proceed by contracting the momentum integrals:

θ6 =
∫

dq1Rl2i2k2 (−q1 − q2) Rl3i3k3 (−q1) |q1 − p1|−y Pk2i1 (q1 − p1) δk1l3δk3l2

× δ
(

p1 + q2 + k̃3

)
C+ (q1) C− (q1 + q2) G+ (q1 − p1) . (C.1.39)

We take the limit of external momentum going to zero:

θ6 =
∫

dqRl2i2k2 (−q) Rl3i3k3 (−q) Pk2i1 (q) |q|−y δk1l3δk3l2 C+ (q) C− (q) G+ (q)

= −
∫

dq
qi2 qi3 qi1 qk1

q2
|q|−y C+ (q) C− (q) G+ (q) . (C.1.40)
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The frequency integral reads:

∫
dβ

2∂
C+ (q) C− (q) G+ (q) =

∫
dβ

2∂

(
1

iβ + σq2 + 1

iβ + μq2

)

×
(

1

iβ + σq2 − 1

iβ + μq2

)
×

(
A

β2 + σ2q4 + B

β2 + μ2q4

)
.

(C.1.41)

Denote a quantity:

U+ = A

(
1

8σ3 + 1

(σ + μ)2 2σ

)
+ B

(
1

8μ3 + 1

(σ + μ)2 2μ

)
. (C.1.42)

The end result reads:

θ6 = − U+
∫

dq
qi2qi3qi1qk1

q4
|q|−y−4

= − U+φεδη
Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
d (d + 2)

. (C.1.43)

Combining all these contributions from the frequency integrals we obtain the fol-
lowing factor:

→ A

[
1

μσ (σ + μ)
+ μ

σ2 (σ + μ)2

]
− B

[
1

2μ3 + 1

μσ (σ + μ)
+ σ

μ2 (σ + μ)2

]

(C.1.44)

We now need to compute the numerical factors in front of this coefficient. A factor of
six comes from the binomial expansion at a cubic order. All of the third order diagrams
however have a prefactor of 1/3! from the cumulant expansion, which cancels the
binomial factor of six. Third order terms all carry a minus sign as a consequence
of a minus a half factor from the loop and a factor of λ3. All together this gives a
correction:

δλ = − λ3

2

(
A

[
1

μσ (σ + μ)
+ μ

σ2 (σ + μ)2

]
− B

[
1

2μ3 + 1

μσ (σ + μ)
+ σ

μ2 (σ + μ)2

])

× φεδη
Sd

(2∂)d

(
δi2i3δi1k1 + δi2k1δi3i1 + δi2i1δi3k1

)
d (d + 2)

. (C.1.45)

Further we note that a correction which is proportional to δi2i3δi1k1 vanishes, where
as the last two combinations do not.

Correction to the vertex n P Q is identical. This can be seen first of all from
the overall symmetry. Alternatively we see that by considering the non-vanishing
diagrams which arise from the contraction of the following terms:
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n>l

p1 k,>

p3

i,<

p2

−→
h>l

p1 i,<

p2

k,>

p3

n<l

p1 k,>

p2

i,>

p3

Effectively we only interchange the indicies i1 ≤ k1 in the bottom vertex. Since
the loop is symmetrical under this interchange and this does not affect frequency
integrals we can conclude that the correction is identical.



Appendix D
Transformation of the RG Corrections
to Original Variables

The following transformations relate ξ+ and ξ− back to viscosity σ and magnetic
diffusivity μ:

σ = ξ+ + ξ−, μ = ξ+ − ξ−. (D.0.1)

D.1 Corrections to Viscosity

By collecting the results from Appendix C, we have:

δσ = Sd

(2∂)d
δηφε

[
− (d + 6 − y)

2d (d + 2)
B̃0− + d − 2 + y

2d (d + 2)
B̃0+ + 1

d (d + 2)

(
C̃ 0+ + C̃ 0−

)

− (d + 6 − y)

2d (d + 2)
B̃0+ + d − 2 + y

2d (d + 2)
B̃0− + 1

d (d + 2)

(
C̃ 0+ + C̃ 0−

)

+B0+
3 − d2

d (d + 2)
− B0−

1

d (d + 2)
+ B0−

3 − d2

d (d + 2)
− B0+

1

d (d + 2)

]

+ Sd

(2∂)d
δηφd−2

[
− (d + 4 − 2y)

2d (d + 2)
B̃2+ + d + 2y

2d (d + 2)
B̃2−

+ 1

d (d + 2)

(
C̃ 2+ + C̃ 2−

)
− (2 + y)

d (d + 2)

(
B̃2+ + B̃2−

)
− (d + 4 − 2y)

2d (d + 2)
B̃2− + d + 2y

2d (d + 2)
B̃2+

+ B2+
3 − d2

d (d + 2)
− B2−

1

d (d + 2)
+ B2−

3 − d2

d (d + 2)
− B2+

1

d (d + 2)

+ 1

d (d + 2)

(
C̃ 2+ + C̃ 2−

)
− (2 + y)

d (d + 2)

(
B̃2+ + B̃2−

)]
. (D.1.1)

Where we have split the loop contribution in the same way we have split noise
covariance:

A = A0 + A2k2+y . (D.1.2)
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Now, we exploit the definitions of frequency integrals:

B+ (φ) + B− (φ) = 1

2

(
A (φ)

σ2 + B (φ)

μ2

)
, (D.1.3)

B̃+ (φ) + B̃− (φ) = 1

2

(
A (φ)

σ2 − B (φ)

μ2

)
, (D.1.4)

C̃+ (φ) + C̃− (φ) = 3

2

(
A (φ)

σ2 − B (φ)

μ2

)
. (D.1.5)

After a little bit of algebra we obtain:

δσ = Sd

(2∂)d
φεδη

{
A0

σ2

(
y + 4 − d2

)
2d (d + 2)

− B0

μ2

(
y + d2

)
2d (d + 2)

}

+ Sd

(2∂)d
φd−2δη

(
A2

σ2 + B2

μ2

)
2 − d2

2d (d + 2)
. (D.1.6)

We can partially check the above result. Recall that the noise amplitude is:

A (k) =
(

A0 + A2k2+y
)

k−y . (D.1.7)

Therefore, by setting either A0 = 0, or, A2 = 0 and y = −2, we should obtain the
same result for the correction to viscosity. Our result clearly satisfies this requirement.
In addition it is in agreement with previous calculations for Navier-Stokes [5].

D.2 Corrections to Resistivity

Following the procedure we have performed to viscosity we can write:

δμ = Sd

(2∂)d
δηφε

[
− (d + 6 − y)

2d (d + 2)
B̃0+ + d − 2 + y

2d (d + 2)
B̃0− + 1

d (d + 2)

(
C̃ 0+ + C̃ 0−

)

+ (d + 6 − y)

2d (d + 2)
B̃0− − d − 2 + y

2d (d + 2)
B̃0+ − 1

d (d + 2)

(
C̃ 0+ + C̃ 0−

)

+B0+
3 − d2

d (d + 2)
− B0−

1

d (d + 2)
− B0−

3 − d2

d (d + 2)
+ B0+

1

d (d + 2)

]

+ Sd

(2∂)d
δηφd−2

[
− (d + 4 − 2y)

2d (d + 2)
B̃2+ + d + 2y

2d (d + 2)
B̃2−

+ 1

d (d + 2)

(
C̃ 2+ + C̃ 2−

)
− (2 + y)

d (d + 2)

(
B̃2+ + B̃2−

)
+ (d + 4 − 2y)

2d (d + 2)
B̃2− − d + 2y

2d (d + 2)
B̃2+

B2+
3 − d2

d (d + 2)
− B2−

1

d (d + 2)
− B2−

3 − d2

d (d + 2)
+ B2+

1

d (d + 2)

− 1

d (d + 2)

(
C̃ 2+ + C̃ 2−

)
+ (2 + y)

d (d + 2)

(
B̃2+ + B̃2−

)]
. (D.2.1)
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After some algebra we arrive at the following expression:

δμ = Sd

(2∂)d
δηφε

[
−

(
B̃0+ − B̃0−

) 1

d
+

(
B0+ − B0−

) 2 − d

d

]

+ Sd

(2∂)d
δηφd−2

[
−

(
B̃2+ − B̃2−

) 1

d
+

(
B2+ − B2−

) 2 − d

d

]
(D.2.2)

By combining the coefficients we obtain:

B+ (φ) − B− (φ) = 1

σ + μ

(
A

σ
+ B

μ

)
, (D.2.3)

B̃+ (φ) − B̃− (φ) = 1

σ + μ

(
A

σ
− B

μ

)
. (D.2.4)

Thus, we get:

δμ = Sd

(2∂)d

φε

(σ + μ)
δη

{
A (φ)

σ

(1 − d)

d
+ B (φ)

μ

(3 − d)

d

}
. (D.2.5)

D.3 Corrections to the Noise Amplitudes

From our calculation we have derived that:

δ(A(k) + B(k)) = k2
[
A+ (φ)

d2 − 3

d (d + 2)
+ A− (φ)

1

d (d + 2)

]
Sd

(2∂)d
φε̃δη,

(D.3.1)

δ(A(k) − B(k)) = k2
[
A− (φ)

d2 − 3

d (d + 2)
+ A+ (φ)

1

d (d + 2)

]
Sd

(2∂)d
φε̃δη.

(D.3.2)

Let us make use of the following relations:

A− (φ) + A+ (φ) = 2

(
A0 + φ2+y A2

)2

σ3 + 2

(
B0 + φ2+y B2

)2

μ3 , (D.3.3)

A+ (φ) − A− (φ) = 4
(

A0 + φ2+y A2
) (

B0 + φ2+y B2
)

σμ (σ + μ)
. (D.3.4)
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Then, it follows that corrections to the noise amplitudes are:

δA(k) = k2

((
A0 + φ2+y A2

)2

σ3 +
(
B0 + φ2+y B2

)2

μ3

)
d2 − 2

d (d + 2)

Sd

(2∂)d
φε̃δη,

(D.3.5)

δB (k) = k2

(
2

(
A0 + φ2+y A2

) (
B0 + φ2+y B2

)
σμ (σ + μ)

)
d − 2

d

Sd

(2∂)d
φε̃δη. (D.3.6)

More specifically

δA2 =
(

A (φ)2

σ3 + B (φ)2

μ3

)
d2 − 2

d (d + 2)

Sd

(2∂)d
φε̃δη, (D.3.7)

δB2 =
(

2A (φ) B (φ)

σμ (σ + μ)

)
d − 2

d

Sd

(2∂)d
φε̃δη, (D.3.8)

where
A (φ) ∗ A0 + φ2+y A2, (D.3.9)

B (φ) ∗ B0 + φ2+y B2. (D.3.10)

D.4 Corrections of the Non-Linear Terms

To appreciate how non-linear terms are modified under RG we have to transform the
field variables P and Q to v and b. The correction to λ is given by third order loop
integral:

δλi1i2i3k1 = − λ3

2

(
A

[
1

μσ (σ + μ)
+ μ

σ2 (σ + μ)2

]
− B

[
1

2μ3 + 1

μσ (σ + μ)
+ σ

μ2 (σ + μ)2

])

× φεδη
Sd

(2∂)d

(
δi2k1 δi3i1 + δi2i1 δi3k1

)
d (d + 2)

. (D.4.1)

Consider now how this term appears in the action:

→
∫ (

λRl1i1k1 (−p) h<
l1 (p) P<

i1
(k) Q<

k1
(q) + δλi1i2i3k1 Rl1i1k1 (−p) h<

l1 (p)

P<
i2

(k) Q<
i3

(q)
)
δ (p + q + k)

+
∫ (

λRl1k1i1 (−p) n<
l1 (p) P<

i1
(k) Q<

k1
(q) + δλi1i2i3k1 Rl1k1i1 (−p) n<

l1 (p)

P<
i2

(k) Q<
i3

(q)
)
δ (p + q + k) ,



Appendix D: Transformation of the RG Corrections to Original Variables 159

where the integration over all space-time variables is implied. To appreciate the
meaning of this correction it is helpful to transform the field variables. Recall:

P = v + b, Q = v − b. (D.4.2)

h = ξ c + θc, (D.4.3)

n = ξ c − θc. (D.4.4)

For compactness we define:

δλi1i2i3k1 = δλ
(
δi2k1δi3i1 + δi2i1δi3k1

)
. (D.4.5)

Then, we can transform the above term:

→
∫

2 (λ + 2δλ) Rl1i1k1 (−p) ξ c
l1 (p)

[
vi1 (k) vk1 (q) − bi1 (k) bk1 (q)

]
δ (p + q + k)

+
∫

2λRl1k1i1 (−p) θc
l1 (p)

[
bi1 (k) vk1 (q) − vi1 (k) bk1 (q)

]
δ (p + q + k) .

(D.4.6)

From the above construct we can see that only non-linear terms in the Navier-Stokes
equation are renormalized by 2δλ. On the other hand, the non-linearity in the induc-
tion equation is not modified.



Appendix E
Rescaling and Differential RG Equations

E.1 Spatial and Temporal Transformations

The aim is to restore the cut-off featuring in the effective theory of large-scale inter-
actions, namely φb−1 → φ, by means of temporal and spatial transformations:

p∀ = bp, β∀ = bzβ. (E.1.1)

At this point we consider each term in the action separately. Consider the time
derivative term:

i
∫

dpdβh (−p, −β) iβP (p, β) → b−d−2z+ξ+ηi
∫

dp∀dβ∀h∀ (−p∀,−β∀) iβ∀ P ∀ (p∀, β∀)
(E.1.2)

By convention we set this term to be invariant under such transformation because all
of the theories governed by first order time derivative dynamics have the same form,
namely:

∂ f

∂t
. (E.1.3)

This means that the exponents have to satisfy the following equation:

d + 2z = ξ + η. (E.1.4)

The next term is of the form:

i
∫

dpdβh (−p,−β) ξ+ p2 P (p, β) → b−d−z+ξ+η−2ξ+i
∫

dp∀dβ∀h∀ (−p∀,−β∀) p2 P ∀ (p∀, β∀) .

(E.1.5)

In terms of the way the coupling ξ+ scales we can write:

ξ ∀+ = b−d−z+ξ+η−2ξ+. (E.1.6)
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Using the limiting form and the identity we have established earlier this can written
as follows:

dξ±
dη

= (z − 2) ξ±. (E.1.7)

Both couplings ξ+ and ξ− scale identically. The non-linear term scales in the fol-
lowing manner:

λ → λb−2d−2z+ξ−1+2η. (E.1.8)

Once again we can exploit the identity for the scaling exponents and consider the
limit of b → 1 to write:

dλ

dη
= (η − d − 1) λ. (E.1.9)

Finally, we have to consider how do the noise amplitudes scale. It is sufficient to
consider a term of the form:

∫
dpdβhi (−p,−β)

(
A0 + A2 p2+y

)
|p|−y Pi j (p) h j (p, β) . (E.1.10)

Under spatial and temporal transformations we obtain:

→ b−d−z+2ξ+y
∫

dpdβhi (−p, −β)
(

A0 + A2b−2−y p2+y) |p|−y Pi j (p) h j (p, β) .

(E.1.11)
Hence, we conclude:

dA0

dη
= (−d − z + 2ξ + y) A0, (E.1.12)

dA2

dη
= (−d − z + 2ξ − 2) A2. (E.1.13)

Evidently, it follows:
dσ

dη
= (z − 2) σ, (E.1.14)

dμ

dη
= (z − 2) μ. (E.1.15)

This scale transformation is now complemented by loop corrections we have calcu-
lated. This leads to the final set of equations:
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dσ

dη
=

(
z − 2 + λ2

σ

[
A0

σ2

(
d2 − y − 4

2d (d + 2)

)
+ B0

μ2

(
y + d2

2d (d + 2)

)

+ (d2 − 2)

2d (d + 2)

(
A2

σ2 + B2

μ2

)
φd−2

]
Sd

(2∂)d
φε

)
σ, (E.1.16)

dμ

dη
=

(
z − 2 + λ2φε

μ (σ + μ)

[
A

σ

(d − 1)

d
+ B

μ

(d − 3)

d

]
Sd

(2∂)d

)
μ, (E.1.17)

dλ

dη
=

(
η − d − 1 − λ2φε

d (d + 2)

Sd

(2∂)d
A

[
1

μσ (σ + μ)
+ μ

σ2 (σ + μ)2

]
(E.1.18)

+ λ2φε

d (d + 2)

Sd

(2∂)d
B

[
1

2μ3 + 1

μσ (σ + μ)
+ σ

μ2 (σ + μ)2

])
λ, (E.1.19)

dA0

dη
= (−d − z + 2ξ + y) A0, (E.1.20)

dB0

dη
= (−d − z + 2ξ + y) B0, (E.1.21)

dA2

dη
=

(
−d − z + 2ξ − 2 + λ2

A2

d2 − 2

d (d + 2)

[
A (φ)2

σ3 + B (φ)2

μ3

]
Sd

(2∂)d
φε̃

)
A2,

(E.1.22)

dB2

dη
=

(
−d − z + 2ξ − 2 + λ2

B2

d − 2

d

[
2A (φ) B (φ)

σμ (σ + μ)

]
Sd

(2∂)d
φε̃

)
B2. (E.1.23)

We have used the following notation:

A (φ) ∗ A0 + φ2+y A2, B (φ) ∗ B0 + φ2+y B2, (E.1.24)

and
ε = d − 4 − y ε̃ = d − 2y − 6. (E.1.25)
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